<div class="csl-bib-body">
<div class="csl-entry">Shehaj, E., Leroy, S., Cahoy, K., Geiger, A., Crocetti, L., Möller, G., Soja, B., & Rothacher, M. (2025). Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation. <i>Atmospheric Measurement Techniques</i>, <i>18</i>(1), 57–72. https://doi.org/10.5194/amt-18-57-2025</div>
</div>
-
dc.identifier.issn
1867-1381
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208208
-
dc.description.abstract
Global Navigation Satellite System (GNSS) radio occultation (RO) is a space-based remote sensing technique that measures the bending angle of GNSS signals as they traverse the Earth's atmosphere. Profiles of the microwave index of refraction can be calculated from the bending angles. High accuracy, long-term stability, and all-weather capability make this technique attractive to meteorologists and climatologists. Meteorologists routinely assimilate RO observations into numerical weather models. RO-based climatologies, however, are complicated to construct as their sampling densities are highly non-uniform and too sparse to resolve synoptic variability in the atmosphere.
In this work, we investigate the potential of machine learning (ML) to construct RO climatologies and compare the results of an ML construction with Bayesian interpolation (BI), a state-of-the-art method to generate maps of RO products. We develop a feed-forward neural network applied to Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) RO observations and evaluate the performance of BI and ML by analysis of residuals when applied to test data. We also simulate data taken from the atmospheric analyses produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in order to test the resolving power of BI and ML. Atmospheric temperature, pressure, and water vapor are used to calculate microwave refractivity at 2, 3, 5, 8, 15, and 20 km in geopotential height, with each level representing a different dynamical regime of the atmosphere. The simulated data are the values of microwave refractivity produced by ECMWF at the geolocations of the COSMIC-2 RO constellation, which fall equatorward of 46° in latitude. The maps of refractivity produced using the neural networks better match the true maps produced by ECMWF than maps using BI. The best results are obtained when fusing BI and ML, specifically when applying ML to the post-fit residuals of BI. At the six iso-heights, we obtain post-fit residuals of 10.9, 9.1, 5.3, 1.6, 0.6, and 0.3 N units for BI and 8.7, 6.6, 3.6, 1.1, 0.3, and 0.2 N units for the fused BI&ML. These results are independent of season.
The BI&ML method improves the effective horizontal resolution of the posterior longitude–latitude refractivity maps. By projecting the original and the inferred maps at 2 km in iso-height onto spherical harmonics, we find that the BI-only technique can resolve refractivity in the horizontal up to spherical harmonic degree 8, while BI&ML can resolve maps of refractivity using the same input data up to spherical harmonic degree 14.
en
dc.language.iso
en
-
dc.publisher
COPERNICUS GESELLSCHAFT MBH
-
dc.relation.ispartof
Atmospheric Measurement Techniques
-
dc.subject
GNSS
en
dc.subject
Radio occultation
en
dc.subject
Machine Learning
en
dc.subject
Meteorology
en
dc.title
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
Atmospheric and Environmental Research, United States of America (the)
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.description.startpage
57
-
dc.description.endpage
72
-
dc.type.category
Original Research Article
-
tuw.container.volume
18
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
10
-
dcterms.isPartOf.title
Atmospheric Measurement Techniques
-
tuw.publication.orgunit
E120-04 - Forschungsbereich Höhere Geodäsie
-
tuw.publisher.doi
10.5194/amt-18-57-2025
-
dc.date.onlinefirst
2025
-
dc.identifier.eissn
1867-8548
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0003-4862-4755
-
tuw.author.orcid
0000-0003-2629-8979
-
tuw.author.orcid
0000-0003-2538-4111
-
tuw.author.orcid
0000-0002-6153-3084
-
tuw.author.orcid
0000-0002-7010-2147
-
tuw.author.orcid
0000-0002-7993-8573
-
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Physische Geographie
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1054
-
wb.sciencebranch.value
70
-
wb.sciencebranch.value
15
-
wb.sciencebranch.value
15
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
ETH Zurich
-
crisitem.author.dept
Atmospheric and Environmental Research
-
crisitem.author.dept
Massachusetts Institute of Technology
-
crisitem.author.dept
ETH Zurich
-
crisitem.author.dept
E120-01-2 - Forschungsgruppe Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-04 - Forschungsbereich Höhere Geodäsie
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing