<div class="csl-bib-body">
<div class="csl-entry">Salihu, A., Rupp, M., & Schwarz, S. (2023). Self-Supervised Learning for Wireless Localization. In I. A. Alimi & J. J. Popoola (Eds.), <i>5G and 6G Enhanced Broadband Communications</i>. IntechOpen. https://doi.org/10.5772/intechopen.1003773</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208226
-
dc.description.abstract
In this chapter, we provide an overview of several data-driven techniques for wireless localization. We initially discuss shallow dimensionality reduction (DR) approaches and investigate a supervised learning method. Subsequently, we transition into deep metric learning and then place particular emphasis on a transformer-based model and self-supervised learning. We highlight a new research direction of employing designed pretext tasks to train AI models, enabling them to learn compressed channel features useful for wireless localization. We use datasets obtained in massive multiple-input multiple-output (MIMO) systems indoors and outdoors to investigate the performance of the discussed approaches.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
wireless localization
en
dc.subject
fingerprinting
en
dc.subject
machine learning
en
dc.title
Self-Supervised Learning for Wireless Localization
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.relation.isbn
978-1-80356-168-4
-
dc.relation.doi
10.5772/intechopen.100728
-
dc.relation.grantno
-
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
5G and 6G Enhanced Broadband Communications
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IntechOpen
-
tuw.relation.publisherplace
Rijeka
-
tuw.book.chapter
10
-
tuw.project.title
Zuverlässige Drahtlose Konnektivität für eine Gesellschaft in Bewegung