<div class="csl-bib-body">
<div class="csl-entry">Bauer, P., Kapfinger, J., Konrad, M., Leopold, T., Wilker, S., & Sauter, T. (2024). DER Control: Harnessing DDPG and MILP for Enhanced Performance in Active Energy Management. In <i>2024 International Workshop on Intelligent Systems (IWIS)</i> (pp. 1–6). IEEE. https://doi.org/10.1109/IWIS62722.2024.10706058</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208333
-
dc.description.abstract
Energy communities (EC) have emerged as a significant approach for enhancing the efficiency of renewable energy use in the low-power private sector. The increasing penetration of decentralized renewable energy resources (DERs), such as battery storage, photovoltaic (PV) systems, and heat pumps, has generated a need for advanced community-wide control mechanisms. Traditional model-based controllers, while effective, often require labor-intensive mathematical modeling and linear approximations, limiting their flexibility and accuracy. This paper introduces a deep reinforcement learning (DRL) approach, specifically the Deep Deterministic Policy Gradient (DDPG) algorithm, for the autonomous and optimal management of DERs within an EC. The algorithm’s ability to enhance DER control is demonstrated by comparing its performance against the results of a model-derived optimization task solved by mixed integer linear programming (MILP). The results yielded by both algorithms are found to be comparable in quality in shaving demand peaks and power grid-friendly power consumption curves. The study underscores the potential of EC power consumption optimization and intermediate energy storage, thereby contributing to grid stability and carbon emission reduction.
en
dc.description.sponsorship
BM f. Klimaschutz, Umwelt, Energie, Mobilität, Innovation u.Technologie
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Control
en
dc.subject
Deep Deterministic Policy Gradient
en
dc.subject
Deep Reinforcement Learning
en
dc.subject
Energy Communities
en
dc.subject
Mixed Integer Linear Programming
en
dc.subject
Replay Buffer
en
dc.title
DER Control: Harnessing DDPG and MILP for Enhanced Performance in Active Energy Management
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.isbn
979-8-3503-5330-3
-
dc.description.startpage
1
-
dc.description.endpage
6
-
dc.relation.grantno
FO999903928
-
dc.relation.grantno
46131654
-
dc.rights.holder
IEEE
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 International Workshop on Intelligent Systems (IWIS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
Probabilistic Sector coupling Optimizer
-
tuw.project.title
Autonomous AI for cellular energy systems increasing flexibilities provided by sector coupling and distributed storage
-
tuw.researchTopic.id
E1
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Energy Active Buildings, Settlements and Spatial Infrastructures
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publication.orgunit
E056-16 - Fachbereich SafeSeclab
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publisher.doi
10.1109/IWIS62722.2024.10706058
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0009-0000-4887-1137
-
tuw.author.orcid
0009-0006-4162-1729
-
tuw.author.orcid
0000-0002-9873-0751
-
tuw.event.name
The International Workshop on Intelligent Systems (IWIS 2024)
en
tuw.event.startdate
28-08-2024
-
tuw.event.enddate
30-08-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Ulsan
-
tuw.event.country
KR
-
tuw.event.institution
University of Ulsan
-
tuw.event.presenter
Bauer, Paul
-
tuw.event.track
Single Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
crisitem.project.funder
BM f. Klimaschutz, Umwelt, Energie, Mobilität, Innovation u.Technologie
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
FO999903928
-
crisitem.project.grantno
46131654
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384-02 - Forschungsbereich Systems on Chip
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.orcid
0009-0000-4887-1137
-
crisitem.author.orcid
0009-0006-4162-1729
-
crisitem.author.orcid
0000-0002-9873-0751
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik