<div class="csl-bib-body">
<div class="csl-entry">Müller, S. (2024). Independence Phenomena in Mathematics: a Set Theoretic Perspective on Current Obstacles and Scenarios for Solutions. <i>Internationale Mathematische Nachrichten</i>, <i>78</i>(255), 13–21.</div>
</div>
-
dc.identifier.issn
0020-7926
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208375
-
dc.description.abstract
The standard axioms of set theory, the Zermelo-Fraenkel axioms (ZFC), do not suffice to answer all questions in mathematics. While this follows abstractly from Kurt Gödel’s famous incompleteness theorems, we nowadays know numerous concrete examples for such questions. A large number of problems in set theory, for example, regularity properties such as Lebesgue measurability and the Baire property are not decided – for even rather simple (for example, projective) sets of reals – by ZFC. Even many problems outside of set theory have been showed to be unsolvable, meaning neither their truth nor their failure can be proven from ZFC. A major part of set theory is devoted to attacking this problem by studying various extensions of ZFC and their properties. We outline some of these extensions and explain current obstacles in understanding their impact on the set theoretical universe together with recent progress on these questions and future scenarios. This work is related to the overall goal to identify the “right” axioms for mathematics.
en
dc.language.iso
en
-
dc.relation.ispartof
Internationale Mathematische Nachrichten
-
dc.subject
Independence
en
dc.subject
Large Cardinal
en
dc.subject
Determinacy
en
dc.title
Independence Phenomena in Mathematics: a Set Theoretic Perspective on Current Obstacles and Scenarios for Solutions
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
13
-
dc.description.endpage
21
-
dc.type.category
Original Research Article
-
tuw.container.volume
78
-
tuw.container.issue
255
-
tuw.peerreviewed
false
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Internationale Mathematische Nachrichten
-
tuw.publication.orgunit
E104-08 - Forschungsbereich Mengenlehre
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-7224-187X
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0002-7224-187X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie