<div class="csl-bib-body">
<div class="csl-entry">De Gennaro, D., Diana, A., Kubin, A., & Kubin, A. (2024). Stability of the surface diffusion flow and volume-preserving mean curvature flow in the flat torus. <i>Mathematische Annalen</i>, <i>390</i>(3), 4429–4461. https://doi.org/10.1007/s00208-024-02863-3</div>
</div>
-
dc.identifier.issn
0025-5831
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208429
-
dc.description.abstract
We prove that, in the flat torus and in any dimension, the volume-preserving mean curvature flow and the surface diffusion flow, starting C1,1 -close to a strictly stable critical set of the perimeter E, exist for all times and converge to a translate of E exponentially fast as time goes to infinity.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Mathematische Annalen
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Geometric flow
en
dc.subject
Stability
en
dc.subject
Asymptotic behaviour
en
dc.title
Stability of the surface diffusion flow and volume-preserving mean curvature flow in the flat torus