<div class="csl-bib-body">
<div class="csl-entry">Chew, L., De Colnet, A., Slivovsky, F., & Szeider, S. (2024). Hardness of Random Reordered Encodings of Parity for Resolution and CDCL. In <i>Proceedings of the AAAI Conference on Artificial Intelligence (AAAI ’24)</i> (pp. 7978–7986). AAAI Press. https://doi.org/10.1609/aaai.v38i8.28635</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208525
-
dc.description.abstract
Parity reasoning is challenging for Conflict-Driven Clause Learning (CDCL) SAT solvers. This has been observed even for simple formulas encoding two contradictory parity constraints with different variable orders (Chew and Heule 2020). We provide an analytical explanation for their hardness by showing that they require exponential resolution refutations with high probability when the variable order is chosen at random. We obtain this result by proving that these formulas, which are known to be Tseitin formulas, have Tseitin graphs of linear treewidth with high probability. Since such Tseitin formulas require exponential resolution proofs, our result follows. We generalize this argument to a new class of formulas that capture a basic form of parity reasoning involving a sum of two random parity constraints with random orders. Even when the variable order for the sum is chosen favorably, these formulas remain hard for resolution. In contrast, we prove that they have short DRAT refutations. We show experimentally that the running time of CDCL SAT solvers on both classes of formulas grows exponentially with their treewidth.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
CSO: Satisfiability
en
dc.subject
KRR: Computational Complexity of Reasoning
en
dc.subject
KRR: Automated Reasoning and Theorem Proving
en
dc.subject
CSO: Other Foundations of Constraint Satisfaction
en
dc.title
Hardness of Random Reordered Encodings of Parity for Resolution and CDCL
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI '24)
-
dc.contributor.affiliation
University of Liverpool, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-887-9
-
dc.relation.issn
2159-5399
-
dc.description.startpage
7978
-
dc.description.endpage
7986
-
dc.relation.grantno
ESP 235-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 38th AAAI Conference on Artificial Intelligence
-
tuw.container.volume
38
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington, DC, USA
-
tuw.book.chapter
8
-
tuw.project.title
Überwindung der Nichthandbarkeit im Knowledge Compilation Map
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1609/aaai.v38i8.28635
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-7517-6735
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
38th AAAI Conference on Artificial Intelligence (AAAI '24)
en
tuw.event.startdate
20-02-2024
-
tuw.event.enddate
27-02-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
De Colnet, Alexis
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity