<div class="csl-bib-body">
<div class="csl-entry">Dabrowski, K., Eiben, E., Ordyniak, S., Paesani, G., & Szeider, S. (2024). Learning Small Decision Trees for Data of Low Rank-Width. In <i>Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)</i> (pp. 10476–10483). AAAI Press. https://doi.org/10.1609/aaai.v38i9.28916</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208526
-
dc.description.abstract
We consider the NP-hard problem of finding a smallest decision tree representing a classification instance in terms of a partially defined Boolean function. Small decision trees are desirable to provide an interpretable model for the given data. We show that the problem is fixed-parameter tractable when parameterized by the rank-width of the incidence graph of the given classification instance. Our algorithm proceeds by dynamic programming using an NLC decomposition obtained from a rank-width decomposition. The key to the algorithm is a succinct representation of partial solutions. This allows us to limit the space and time requirements for each dynamic programming step in terms of the parameter.
en
dc.language.iso
en
-
dc.subject
KRR: Computational Complexity of Reasoning
-
dc.title
Learning Small Decision Trees for Data of Low Rank-Width
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
-
dc.contributor.affiliation
Newcastle University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-887-9
-
dc.relation.issn
2159-5399
-
dc.description.startpage
10476
-
dc.description.endpage
10483
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2374-3468
-
tuw.booktitle
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
-
tuw.container.volume
38
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington, DC, USA
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1609/aaai.v38i9.28916
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0001-9515-6945
-
tuw.author.orcid
0000-0002-2383-1339
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
The 38th Annual AAAI Conference on Artificial Intelligence
-
tuw.event.startdate
20-02-2024
-
tuw.event.enddate
27-02-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Dabrowski, Konrad
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Newcastle University
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
University of Leeds
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity