<div class="csl-bib-body">
<div class="csl-entry">Dvorak, W., König, M., Ulbricht, M., & Woltran, S. (2024). Principles and their Computational Consequences for Argumentation Frameworks with Collective Attacks. <i>Journal of Artificial Intelligence Research</i>, <i>79</i>, 69–136. https://doi.org/10.1613/jair.1.14879</div>
</div>
-
dc.identifier.issn
1076-9757
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208532
-
dc.description.abstract
Argumentation frameworks (AFs) are a key formalism in AI research. Their semantics have been investigated in terms of principles, which define characteristic properties in order to deliver guidance for analyzing established and developing new semantics. Because of the simple structure of AFs, many desired properties hold almost trivially, at the same time hiding interesting concepts behind syntactic notions. We extend the principle-based approach to argumentation frameworks with collective attacks (SETAFs) and provide a comprehensive overview of common principles for their semantics. Our analysis shows that investigating principles based on decomposing the given SETAF (e.g. directionality or SCC-recursiveness) poses additional challenges in comparison to usual AFs. We introduce the notion of the reduct as well as the modularization principle for SETAFs which will prove beneficial for this kind of investigation. We then demonstrate how our findings can be utilized for incremental computation of extensions and show how we can use graph properties of the frameworks to speed up these algorithms.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.publisher
AI ACCESS FOUNDATION
-
dc.relation.ispartof
Journal of Artificial Intelligence Research
-
dc.subject
abstract argumentation
en
dc.subject
computational complexity
en
dc.subject
nonmonotonic reasoning
en
dc.title
Principles and their Computational Consequences for Argumentation Frameworks with Collective Attacks
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Leipzig University, Germany
-
dc.description.startpage
69
-
dc.description.endpage
136
-
dc.relation.grantno
P32830-N
-
dc.relation.grantno
ICT19-065
-
dc.type.category
Original Research Article
-
tuw.container.volume
79
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Hybrid Parameterized Problem Solving in Practice
-
tuw.project.title
Revealing and Utilizing the Hidden Structure for Solving Hard Problems in AI
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Artificial Intelligence Research
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1613/jair.1.14879
-
dc.identifier.eissn
1943-5037
-
dc.description.numberOfPages
68
-
tuw.author.orcid
0000-0002-2269-8193
-
tuw.author.orcid
0000-0003-0205-0039
-
tuw.author.orcid
0000-0003-1594-8972
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
crisitem.project.grantno
P32830-N
-
crisitem.project.grantno
ICT19-065
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence