<div class="csl-bib-body">
<div class="csl-entry">Hoffman, A., Fnayou, A., Smirnov, F., Müller-Gritschneder, D., & Schlichtmann, U. (2024). MuDSE: GA-ILP-based Framework for Automated Deployment of Multiple DNNs on Heterogeneous Mixed-Criticality Systems. In <i>2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS)</i>. IEEE COINS 2024: IEEE International Conference on Omni-layer Intelligent systems, London, United Kingdom of Great Britain and Northern Ireland (the). IEEE. https://doi.org/10.1109/COINS61597.2024.10622135</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208550
-
dc.description.abstract
In modern edge computing, deploying multi-deep neural network (DNN) applications is essential for addressing complex tasks such as visual classification, object tracking, and navigation. The intricate nature of these Machine Learning (ML) applications, coupled with their soft and hard real-time performance requirements, underscores the necessity for automated optimisation of both scheduling and mapping configurations on computationally robust heterogeneous embedded systems. This paper introduces a novel approach for the automated mapping and scheduling of multiple DNNs onto heterogeneous hardware platforms. Our methodology leverages an integer linear program (ILP) scheduler formulation that accommodates soft and hard real-time constraints. This is complemented by a mapping generation process that employs (a) an advanced ILP formulation and (b) a Genetic Algorithm (GA) designed to identify optimised solutions for large-scale mappings. The GA is mainly utilised when the expansive design space renders the ILP formulation impractical in terms of computational solving time. We rigorously test and evaluate our framework using scaling input model configurations and a real-world mixed-model scenario. The results demonstrate that our hybrid optimisation solution, which integrates Prepositional Satisfiability Problem (SAT) decoding, the NSGA-II GA, and ILP, significantly enhances scalability. This improvement is vital for efficiently deploying complex systems, marking a substantial advancement in the embedded ML field.
en
dc.language.iso
en
-
dc.subject
DSE
en
dc.subject
ILP
en
dc.subject
Mapping
en
dc.subject
multi-DNN
en
dc.subject
Scheduling
en
dc.subject
TinyML
en
dc.title
MuDSE: GA-ILP-based Framework for Automated Deployment of Multiple DNNs on Heterogeneous Mixed-Criticality Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
-
dc.relation.isbn
979-8-3503-4959-7
-
dc.relation.doi
10.1109/COINS61597.2024
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/COINS61597.2024.10622135
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-0903-631X
-
tuw.event.name
IEEE COINS 2024: IEEE International Conference on Omni-layer Intelligent systems
-
tuw.event.startdate
29-07-2024
-
tuw.event.enddate
31-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
London
-
tuw.event.country
GB
-
tuw.event.presenter
Hoffman, Alexander
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems