<div class="csl-bib-body">
<div class="csl-entry">Jendal, T. E., Le, T.-H., Lauw, H. W., Lissandrini, M., Dolog, P., & Hose, K. (2024). Hypergraphs with Attention on Reviews for Explainable Recommendation. In <i>Advances in Information Retrieval</i> (pp. 230–246). Springer, Cham. https://doi.org/10.1007/978-3-031-56027-9_14</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208553
-
dc.description.abstract
Given a recommender system based on reviews, the challenges are how to effectively represent the review data and how to explain the produced recommendations. We propose a novel review-specific Hypergraph (HG) model, and further introduce a model-agnostic explainability module. The HG model captures high-order connections between users, items, aspects, and opinions while maintaining information about the review. The explainability module can use the HG model to explain a prediction generated by any model. We propose a path-restricted review-selection method biased by the user preference for item reviews and propose a novel explanation method based on a review graph. Experiments on real-world datasets confirm the ability of the HG model to capture appropriate explanations.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Hypergraphs
en
dc.subject
Explainable Recommendation
en
dc.subject
high-order connections
en
dc.title
Hypergraphs with Attention on Reviews for Explainable Recommendation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Advances in Information Retrieval
-
dc.relation.isbn
978-3-031-56026-2
-
dc.relation.doi
10.1007/978-3-031-56027-9
-
dc.relation.issn
0302-9743
-
dc.description.startpage
230
-
dc.description.endpage
246
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Advances in Information Retrieval
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer, Cham
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Health virtual twins for the personalised management of stroke related to atrial fibrillation
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1007/978-3-031-56027-9_14
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0003-2229-9042
-
tuw.author.orcid
0000-0002-2349-482X
-
tuw.author.orcid
0000-0002-8245-8677
-
tuw.author.orcid
0000-0001-7922-5998
-
tuw.author.orcid
0000-0003-1842-9131
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.event.name
46th European Conference on Information Retrieval (ECIR 2024)
en
tuw.event.startdate
24-03-2024
-
tuw.event.enddate
28-03-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Glasgow
-
tuw.event.country
GB
-
tuw.event.presenter
Hose, Katja
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
???
-
crisitem.author.dept
University of Verona, Italy
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence