<div class="csl-bib-body">
<div class="csl-entry">Marin, D., Parakkat, A. D., Ohrhallinger, S., Wimmer, M., Oudot, S., & Memari, P. (2024). SING: Stability-Incorporated Neighborhood Graph. In T. Igarashi, A. Shamir, & H. Zhang (Eds.), <i>SA ’24: SIGGRAPH Asia 2024 Conference Papers</i> (pp. 1–10). Association for Computing Machinery. https://doi.org/10.1145/3680528.3687674</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208566
-
dc.description.abstract
We introduce the Stability-Incorporated Neighborhood Graph (SING), a novel density-aware structure designed to capture the intrinsic geometric properties of a point set. We improve upon the spheres-of-influence graph by incorporating additional features to offer more flexibility and control in encoding proximity information and capturing local density variations. Through persistence analysis on our proximity graph, we propose a new clustering technique and explore additional variants incorporating extra features for the proximity criterion. Alongside the detailed analysis and comparison to evaluate its performance on various datasets, our experiments demonstrate that the proposed method can effectively extract meaningful clusters from diverse datasets with variations in density and correlation. Our application scenarios underscore the advantages of the proposed graph over classical neighborhood graphs, particularly in terms of parameter tuning.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.subject
Proximity graphs
en
dc.subject
Stipple art editing
en
dc.subject
Pattern design
en
dc.subject
Network topology
en
dc.subject
clustering
en
dc.subject
point patterns
en
dc.subject
similarity metric
en
dc.subject
discrete distributions
en
dc.subject
persistence analysis
en
dc.subject
Neighborhood graph
en
dc.subject
topological data analysis
en
dc.subject
K-means
en
dc.subject
Rips complexes
en
dc.title
SING: Stability-Incorporated Neighborhood Graph
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Institut Polytechnique de Paris, France
-
dc.contributor.affiliation
École Polytechnique, France
-
dc.contributor.affiliation
École Polytechnique, France
-
dc.relation.isbn
979-8-4007-1131-2
-
dc.description.startpage
1
-
dc.description.endpage
10
-
dc.relation.grantno
ICT19-009
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
SA '24: SIGGRAPH Asia 2024 Conference Papers
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.book.chapter
130
-
tuw.project.title
Modellierung der Welt nach Maß
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publication.orgunit
E057-16 - Fachbereich Center for Geometry and Computational Design