<div class="csl-bib-body">
<div class="csl-entry">Ordyniak, S., Paesani, G., Rychlicki, M., & Szeider, S. (2024). A General Theoretical Framework for Learning Smallest Interpretable Models. In <i>Proceedings of the 38th AAAI Conference on Artificial Intelligence</i> (pp. 10662–10669). AAAI Press. https://doi.org/10.1609/aaai.v38i9.28937</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208689
-
dc.description.abstract
We develop a general algorithmic framework that allows us to obtain fixed-parameter tractability for computing smallest symbolic models that represent given data. Our framework applies to all ML model types that admit a certain extension property. By establishing this extension property for decision trees, decision sets, decision lists, and binary decision diagrams, we obtain that minimizing these fundamental model types is fixed-parameter tractable. Our framework even applies to ensembles, which combine individual models by majority decision.
en
dc.language.iso
en
-
dc.subject
KRR: Computational Complexity of Reasoning
en
dc.subject
ML: Transparent
en
dc.subject
Interpretable, Explainable ML
en
dc.title
A General Theoretical Framework for Learning Smallest Interpretable Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the 38th AAAI Conference on Artificial Intelligence
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-887-9
-
dc.relation.issn
2159-5399
-
dc.description.startpage
10662
-
dc.description.endpage
10669
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2374-3468
-
tuw.booktitle
Proceedings of the 38th AAAI Conference on Artificial Intelligence
-
tuw.container.volume
38
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington, DC
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1609/aaai.v38i9.28937
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-2383-1339
-
tuw.author.orcid
0000-0002-8318-2588
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
38th AAAI Conference on Artificial Intelligence (AAAI 2024)
en
tuw.event.startdate
22-02-2024
-
tuw.event.enddate
27-02-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Ordyniak, Sebastian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
crisitem.author.dept
University of Leeds, United Kingdom of Great Britain and Northern Ireland (the)
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity