<div class="csl-bib-body">
<div class="csl-entry">Rybinski, M., Kusa, W., Karimi, S., & Hanbury, A. (2024). Learning to match patients to clinical trials using large language models. <i>Journal of Biomedical Informatics</i>, <i>159</i>, Article 104734. https://doi.org/10.1016/j.jbi.2024.104734</div>
</div>
-
dc.identifier.issn
1532-0464
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208708
-
dc.description.abstract
This study investigates the use of Large Language Models (LLMs) for matching patients to clinical trials (CTs) within an information retrieval pipeline. Our objective is to enhance the process of patient-trial matching by leveraging the semantic processing capabilities of LLMs, thereby improving the effectiveness of patient recruitment for clinical trials.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
-
dc.relation.ispartof
Journal of Biomedical Informatics
-
dc.subject
Humans
en
dc.subject
Information Storage and Retrieval
en
dc.subject
Semantics
en
dc.subject
Algorithms
en
dc.subject
Clinical trials
en
dc.subject
Information retrieval
en
dc.subject
Large language models
en
dc.subject
Learning-to-rank
en
dc.subject
Patient to trials matching
en
dc.subject
TCRR
en
dc.subject
TREC CT
en
dc.subject
Clinical Trials as Topic
en
dc.subject
Natural Language Processing
en
dc.subject
Patient Selection
en
dc.title
Learning to match patients to clinical trials using large language models