<div class="csl-bib-body">
<div class="csl-entry">Varga, J., Karlsson, E., Raidl, G. R., Rönnberg, E., Lindsten, F., & Rodemann, T. (2024). Speeding Up Logic-Based Benders Decomposition by Strengthening Cuts with Graph Neural Networks. In G. Nicosia, V. Ojha, & E. La Malfa (Eds.), <i>Machine Learning, Optimization, and Data Science : 9th International Conference, LOD 2023, Grasmere, UK, September 22–26, 2023, Revised Selected Papers, Part I</i> (pp. 24–38). Springer. https://doi.org/10.1007/978-3-031-53969-5_3</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208724
-
dc.description.abstract
Logic-based Benders decomposition is a technique to solve optimization problems to optimality. It works by splitting the problem into a master problem, which neglects some aspects of the problem, and a subproblem, which is used to iteratively produce cuts for the master problem to account for those aspects. It is critical for the computational performance that these cuts are strengthened, but the strengthening of cuts comes at the cost of solving additional subproblems. In this work we apply a graph neural network in an autoregressive fashion to approximate the compilation of an irreducible cut, which then only requires few postprocessing steps to ensure its validity. We test the approach on a job scheduling problem with a single machine and multiple time windows per job and compare to approaches from the literature. Results show that our approach is capable of considerably reducing the number of subproblems that need to be solved and hence the total computational effort.
en
dc.description.sponsorship
Honda Research Institute Europe Gmb
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Cut Strengthening
en
dc.subject
Graph Neural Networks
en
dc.subject
Job Scheduling
en
dc.subject
Logic-based Benders Decomposition
en
dc.title
Speeding Up Logic-Based Benders Decomposition by Strengthening Cuts with Graph Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Honda (Germany), Germany
-
dc.relation.isbn
978-3-031-53968-8
-
dc.relation.doi
10.1007/978-3-031-53969-5
-
dc.relation.issn
0302-9743
-
dc.description.startpage
24
-
dc.description.endpage
38
-
dc.relation.grantno
02/2022
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Machine Learning, Optimization, and Data Science : 9th International Conference, LOD 2023, Grasmere, UK, September 22–26, 2023, Revised Selected Papers, Part I
-
tuw.container.volume
14505
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Cooperative Personnel Scheduling
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-53969-5_3
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-1413-7115
-
tuw.author.orcid
0000-0002-9498-1924
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.author.orcid
0000-0002-2081-2888
-
tuw.author.orcid
0000-0003-3749-5820
-
tuw.author.orcid
0000-0001-6256-0060
-
tuw.editor.orcid
0009-0000-5592-8218
-
tuw.editor.orcid
0000-0002-6254-0470
-
tuw.event.name
9th International Conference on Machine Learning, Optimization, and Data Science (LOD 2023)
en
tuw.event.startdate
22-09-2023
-
tuw.event.enddate
26-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Grasmere
-
tuw.event.country
GB
-
tuw.event.presenter
Varga, Johannes
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
Linköping University, Sweden
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity