<div class="csl-bib-body">
<div class="csl-entry">Wietheger, S., & Doerr, B. (2024). A Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm III (NSGA-III). In <i>GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion</i> (pp. 63–64). The Association for Computing Machinery. https://doi.org/10.1145/3638530.3664062</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208729
-
dc.description.abstract
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is the most prominent multi-objective evolutionary algorithm for real-world applications. While it performs evidently well on bi-objective optimization problems, empirical studies suggest that it is less effective when applied to problems with more than two objectives. A recent mathematical runtime analysis confirmed this observation by proving that the NGSA-II for an exponential number of iterations misses a constant factor of the Pareto front of the simple m-objective OneMinMax problem when m ≥ 3.In this work, we provide the first mathematical runtime analysis of the NSGA-III, a refinement of the NSGA-II aimed at better handling more than two objectives. We prove that the NSGA-III with sufficiently many reference points - a small constant factor more than the size of the Pareto front, as suggested for this algorithm - computes the complete Pareto front of the 3-objective OneMinMax benchmark in an expected number of O(n log n) iterations. This result holds for all population sizes (that are at least the size of the Pareto front). It shows a drastic advantage of the NSGA-III over the NSGA-II on this benchmark.This paper for the Hot-off-the-Press track at GECCO 2024 summarizes the work Simon Wietheger and Benjamin Doerr. A mathematical runtime analysis of the Non-dominated Sorting Genetic Algorithm III (NSGA-III). In International Joint Conference on Artificial Intelligence, IJCAI 2023. 5657 - 5665, 2023. [15].
en
dc.language.iso
en
-
dc.subject
multi-objective optimization
en
dc.subject
NSGA-III
en
dc.subject
runtime analysis
en
dc.subject
theory
en
dc.title
A Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm III (NSGA-III)
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-0495-6
-
dc.description.startpage
63
-
dc.description.endpage
64
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
-
tuw.peerreviewed
true
-
tuw.relation.publisher
The Association for Computing Machinery
-
tuw.relation.publisherplace
New York, NY, USA
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1145/3638530.3664062
-
dc.description.numberOfPages
2
-
tuw.author.orcid
0000-0002-0734-0708
-
tuw.author.orcid
0000-0002-9786-220X
-
tuw.event.name
GECCO '24 Companion: Genetic and Evolutionary Computation Conference Companion
en
tuw.event.startdate
14-07-2024
-
tuw.event.enddate
18-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Wietheger, Simon
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity