<div class="csl-bib-body">
<div class="csl-entry">Wietheger, S., & Doerr, B. (2024). Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms. In <i>Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part IV</i> (pp. 153–168). Springer. https://doi.org/10.1007/978-3-031-70085-9_10</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/208730
-
dc.description.abstract
Despite significant progress in the field of mathematical runtime analysis of multi-objective evolutionary algorithms (MOEAs), the performance of MOEAs on discrete many-objective problems is little understood. In particular, the few existing bounds for the SEMO, global SEMO, and SMS-EMOA algorithms on classic benchmarks are all roughly quadratic in the size of the Pareto front. In this work, we prove near-tight runtime guarantees for these three algorithms on the four most common benchmark problems OneMinMax, CountingOnesCountingZeros, LeadingOnesTrailingZeros, and OneJumpZeroJump, and this for arbitrary numbers of objectives. Our bounds depend only linearly on the Pareto front size, showing that these MOEAs on these benchmarks cope much better with many objectives than what previous works suggested. Our bounds are tight apart from small polynomial factors in the number of objectives and length of bitstrings. This is the first time that such tight bounds are proven for many-objective uses of these MOEAs. While it is known that such results cannot hold for the NSGA-II, we do show that our bounds, via a recent structural result, transfer to the NSGA-III algorithm.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
evolutionary multi-objective optimization
en
dc.subject
NSGA
en
dc.subject
runtime analysis
en
dc.subject
SMS-EMOA
en
dc.subject
theory
en
dc.title
Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-70085-9
-
dc.relation.doi
10.1007/978-3-031-70085-9
-
dc.description.startpage
153
-
dc.description.endpage
168
-
dc.relation.grantno
Y1329-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Parallel Problem Solving from Nature – PPSN XVIII : 18th International Conference, PPSN 2024, Hagenberg, Austria, September 14–18, 2024, Proceedings, Part IV
-
tuw.container.volume
15151
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Parameterisierte Analyse in der Künstlichen Intelligenz
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-70085-9_10
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-0734-0708
-
tuw.author.orcid
0000-0002-9786-220X
-
tuw.event.name
18th International Conference on Parallel Problem Solving From Nature (PPSN 2024)
en
tuw.event.startdate
14-09-2024
-
tuw.event.enddate
18-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Hagenberg
-
tuw.event.country
AT
-
tuw.event.presenter
Wietheger, Simon
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity