<div class="csl-bib-body">
<div class="csl-entry">Lutz, P., & Siskind, B. W. (2024). Part 1 of Martin’s Conjecture for order-preserving and measure-preserving functions. <i>Journal of the American Mathematical Society</i>. https://doi.org/10.1090/jams/1046</div>
</div>
-
dc.identifier.issn
0894-0347
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209084
-
dc.description.abstract
Martin’s Conjecture is a proposed classification of the definable functions on the Turing degrees. It is usually divided into two parts, the first of which classifies functions which are not above the identity and the second of which classifies functions which are above the identity. Slaman and Steel proved the second part of the conjecture for Borel functions which are order-preserving (i.e. which preserve Turing reducibility). We prove the first part of the conjecture for all order-preserving functions. We do this by introducing a class of functions on the Turing degrees which we call “measure-preserving” and proving that part 1 of Martin’s Conjecture holds for all measure-preserving functions and also that all nontrivial order-preserving functions are measure-preserving. Our result on measure-preserving functions has several other consequences for Martin’s Conjecture, including an equivalence between part 1 of the conjecture and a statement about the structure of the Rudin-Keisler order on ultrafilters on the Turing degrees.
en
dc.language.iso
en
-
dc.publisher
AMER MATHEMATICAL SOC
-
dc.relation.ispartof
Journal of the American Mathematical Society
-
dc.subject
set theory
en
dc.subject
computability theory
en
dc.subject
Martin’s Conjecture
en
dc.title
Part 1 of Martin’s Conjecture for order-preserving and measure-preserving functions
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of California, Berkeley, United States of America (the)
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of the American Mathematical Society
-
tuw.publication.orgunit
E104-08 - Forschungsbereich Mengenlehre
-
tuw.publisher.doi
10.1090/jams/1046
-
dc.date.onlinefirst
2024-04-02
-
dc.identifier.eissn
1088-6834
-
tuw.author.orcid
0000-0001-9930-4183
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
University of California, Berkeley
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0001-9930-4183
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie