Davoli, E., Gavioli, C., & Pagliari, V. (2024). A homogenization result in finite plasticity. Calculus of Variations and Partial Differential Equations, 63(3), Article 72. https://doi.org/10.1007/s00526-024-02673-0
We carry out a variational study for integral functionals that model the stored energy of a heterogeneous material governed by finite-strain elastoplasticity with hardening. Assuming that the composite has a periodic microscopic structure, we establish the Γ-convergence of the energies in the limiting of vanishing periodicity. The constraint that plastic deformations belong to SL(3) poses the biggest hurdle to the analysis, and we address it by regarding SL(3) as a Finsler manifold.
en
Project title:
Smarte Materialien: Geometrie, Nichtlokalität, Chiralität: Y1292-N (FWF - Österr. Wissenschaftsfonds) Hochkontrast-Materialien in Plastizität und Magnetismus: V662-N32 (FWF - Österr. Wissenschaftsfonds) Herausforderungen in der Modellierung grosser Verformungen: I 4052 (FWF - Österr. Wissenschaftsfonds)