<div class="csl-bib-body">
<div class="csl-entry">Marimon, P. (2024). Invariant Keisler Measures for ω-Categorical Structures. <i>Journal of Symbolic Logic</i>, 1–17. https://doi.org/10.1017/jsl.2024.39</div>
</div>
-
dc.identifier.issn
0022-4812
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209144
-
dc.description.abstract
A recent article of Chernikov, Hrushovski, Kruckman, Krupinski, Moconja, Pillay and Ramsey finds the first examples of simple structures with formulas which do not fork over the empty set but are universally measure zero. In this article we give the first known simple ω-categorical counterexamples. These happen to be various ω-categorical Hrushovski constructions. Using a probabilistic independence theorem from Jahel and Tsankov, we show how simple ω-categorical structures where a formula forks over ∅ if and only if it is universally measure zero must satisfy a stronger version of the independence theorem.
en
dc.language.iso
en
-
dc.publisher
CAMBRIDGE UNIV PRESS
-
dc.relation.ispartof
Journal of Symbolic Logic
-
dc.subject
model theory
en
dc.subject
omega-categorical structures
en
dc.subject
simple theories
en
dc.subject
Keisler measures
en
dc.subject
universally measure zero
en
dc.subject
independence theorem
en
dc.title
Invariant Keisler Measures for ω-Categorical Structures
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.scopus
2-s2.0-85194463026
-
dc.identifier.url
https://doi.org/10.1017/jsl.2024.39
-
dc.description.startpage
1
-
dc.description.endpage
17
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Symbolic Logic
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1017/jsl.2024.39
-
dc.date.onlinefirst
2024
-
dc.identifier.eissn
1943-5886
-
dc.description.numberOfPages
17
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie