<div class="csl-bib-body">
<div class="csl-entry">Marimon, P. (2024). On the non-measurability of ω-categorical Hrushovski constructions. <i>Archive for Mathematical Logic</i>. https://doi.org/10.1007/s00153-024-00943-4</div>
</div>
-
dc.identifier.issn
0933-5846
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209146
-
dc.description.abstract
We study ω-categorical MS-measurable structures. Our main result is that a certain class of ω-categorical Hrushovski constructions, supersimple of finite SU-rank is not MS-measurable. These results complement the work of Evans on a conjecture of Macpherson and Elwes. In constrast to Evans’ work, our structures may satisfy independent n-amalgamation for all n. We also prove some general results in the context of ω-categorical MS-measurable structures. Firstly, in these structures, the dimension in the MS-dimension-measure can be chosen to be SU-rank. Secondly, non-forking independence implies a form of probabilistic independence in the measure. The latter follows from more general unpublished results of Hrushovski, but we provide a self-contained proof.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Archive for Mathematical Logic
-
dc.subject
03C45
en
dc.subject
Hrushovski constructions
en
dc.subject
MS-measurability
en
dc.subject
Probabilistic independence
en
dc.subject
Simple theories
en
dc.subject
ω-Categorical structures
en
dc.title
On the non-measurability of ω-categorical Hrushovski constructions