<div class="csl-bib-body">
<div class="csl-entry">D’Elia, L., Eleuteri, M., & Zappale, E. (2024). Homogenization of supremal functionals in the vectorial case (via Lp-approximation). <i>Analysis and Applications</i>, <i>22</i>(07), 1255–1302. https://doi.org/10.1142/S0219530524500179</div>
</div>
-
dc.identifier.issn
0219-5305
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209176
-
dc.description.abstract
We propose a homogenized supremal functional rigorously derived via Lp-approximation by functionals of the type ess-supx∈Ω f(x/ϵ, Du), when Ω is a bounded open set of ℝn and u ∈ W1,∞ (Ω; ℝd). The homogenized functional is also deduced directly in the case where the sublevel sets of f(x, ·) satisfy suitable convexity properties, as a corollary of homogenization results dealing with pointwise gradient constrained integral functionals.
en
dc.language.iso
en
-
dc.publisher
WORLD SCIENTIFIC PUBL CO PTE LTD
-
dc.relation.ispartof
Analysis and Applications
-
dc.subject
homogenization
en
dc.subject
Lp-approximation
en
dc.subject
supremal functionals
en
dc.subject
pointwise gradient constraints
en
dc.subject
gamma convergence
en
dc.title
Homogenization of supremal functionals in the vectorial case (via Lp-approximation)