<div class="csl-bib-body">
<div class="csl-entry">Bužančić, M., Davoli, E., & Velčić, I. (2024). Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure. <i>Calculus of Variations and Partial Differential Equations</i>, <i>63</i>(4), Article 93. https://doi.org/10.1007/s00526-024-02693-w</div>
</div>
-
dc.identifier.issn
0944-2669
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209199
-
dc.description.abstract
An effective model is identified for thin perfectly plastic plates whose microstructure consists of the periodic assembling of two elastoplastic phases, as the periodicity parameter converges to zero. Assuming that the thickness of the plates and the periodicity of the microstructure are comparably small, a limiting description is obtained in the quasistatic regime via simultaneous homogenization and dimension reduction by means of evolutionary Γ-convergence, two-scale convergence, and periodic unfolding.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Calculus of Variations and Partial Differential Equations
-
dc.subject
quasistatic evolution
en
dc.subject
perfect plasticity
en
dc.subject
dimension reduction
en
dc.subject
homogenization
en
dc.title
Effective quasistatic evolution models for perfectly plastic plates with periodic microstructure