<div class="csl-bib-body">
<div class="csl-entry">Gerencsér, M., & Singh, H. (2024). Strong convergence of parabolic rate 1 of discretisations of stochastic Allen-Cahn-type equations. <i>Transactions of the American Mathematical Society</i>, <i>377</i>(3), 1851–1881. https://doi.org/10.1090/tran/9029</div>
</div>
-
dc.identifier.issn
0002-9947
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209203
-
dc.description.abstract
Consider the approximation of stochastic Allen-Cahn-type equations (i.e. 1 + 1-dimensional space-time white noise-driven stochastic PDEs with polynomial nonlinearities F such that F(±∞) = ∓∞) by a fully discrete space-time explicit finite difference scheme. The consensus in literature, supported by rigorous lower bounds, is that strong convergence rate 1/2 with respect to the parabolic grid meshsize is expected to be optimal. We show that one can reach almost sure convergence rate arbitrarily close to (and no better than) 1 when measuring the error in appropriate negative Besov norms, by temporarily ‘pretending’ that the SPDE is singular.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
AMER MATHEMATICAL SOC
-
dc.relation.ispartof
Transactions of the American Mathematical Society
-
dc.subject
Finite differences
en
dc.subject
Approximation of SPDEs
en
dc.subject
Stochastic Allen-Cahn equation
en
dc.title
Strong convergence of parabolic rate 1 of discretisations of stochastic Allen-Cahn-type equations