<div class="csl-bib-body">
<div class="csl-entry">Lietz, A. T. (2024, January 11). <i>The Model Theoretic Covering Reflection Property</i> [Presentation]. Logic Colloquium, Wien, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209397
-
dc.description.abstract
The Covering Reflection Property holds at a cardinal κ if for every first order structure B in a countable language, there is some A of size <κ so that B can be covered with the ranges of elementary embeddings j:A→B. That is, for every b∈B, there is some a∈A and an elementary embedding j:A→B with j(a)=b. We discuss this property and isolate a new large cardinal notion strictly between almost huge and huge cardinals and show that the least cardinal exhibiting the Covering Reflection Property is exactly the least such large cardinal. Moreover, there is a natural correspondence between such large cardinals and strong forms of the Covering Reflection Property.
This is joint work with Joel D. Hamkins, Nai-Chung Hou and Farmer Schlutzenberg.
en
dc.language.iso
en
-
dc.subject
Large cardinals
en
dc.subject
Reflection principles
en
dc.title
The Model Theoretic Covering Reflection Property
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Presentation
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-08 - Forschungsbereich Mengenlehre
-
tuw.event.name
Logic Colloquium
en
tuw.event.startdate
11-01-2024
-
tuw.event.enddate
11-01-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
Universität Wien
-
tuw.event.presenter
Lietz, Andreas Theodor
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.languageiso639-1
en
-
item.openairetype
conference presentation
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/R60J-J5BD
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie