<div class="csl-bib-body">
<div class="csl-entry">Herwanto, G. B., Quirchmayr, G., & Tjoa, A. M. (2024). Leveraging NLP Techniques for Privacy Requirements Engineering in User Stories. <i>IEEE Access</i>, <i>12</i>, 22167–22189. https://doi.org/10.1109/ACCESS.2024.3364533</div>
</div>
-
dc.identifier.issn
2169-3536
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209497
-
dc.description.abstract
Privacy requirements engineering acts as a role to systematically elicit privacy requirements from system requirements and legal requirements such as the GDPR. Many methodologies have been proposed, but the majority of them are focused on the waterfall approach, making adopting privacy engineering in agile software development difficult. The other major issue is that the process currently is to a high degree manual. This paper focuses on closing these gaps through the development of a machine learning-based approach for identifying privacy requirements in an agile software development environment, employing natural language processing (NLP) techniques. Our method aims to allow agile teams to focus on functional requirements while NLP tools assist them in generating privacy requirements. The main input for our method is a collection of user stories, which are typically used to identify functional requirements in agile software development. The NLP approach is then used to automate some human-intensive tasks such as identifying personal data and creating data flow diagrams from user stories. The data flow diagram forms the basis for the automatic creation of privacy requirements. Our evaluation shows that our NLP method achieves a fairly good performance in terms of F-Measure. We are also demonstrate the feasibility of our NLP approach in CamperPlus project. Lastly, we are developing a tool to integrate our NLP approach into the privacy requirements engineering pipeline, allowing for manual editing of results so that agile teams can maintain control over the automated approach.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Access
-
dc.subject
Privacy requirements engineering
en
dc.subject
natural language processing
en
dc.subject
agile software development
en
dc.subject
user stories
en
dc.title
Leveraging NLP Techniques for Privacy Requirements Engineering in User Stories
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.description.startpage
22167
-
dc.description.endpage
22189
-
dc.type.category
Original Research Article
-
tuw.container.volume
12
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Access
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-19 - Fachbereich Precision Livestock Farming
-
tuw.publisher.doi
10.1109/ACCESS.2024.3364533
-
dc.identifier.eissn
2169-3536
-
dc.description.numberOfPages
23
-
tuw.author.orcid
0000-0002-8295-9252
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-8295-9252
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering