<div class="csl-bib-body">
<div class="csl-entry">Stippel, C., Sterzinger, R., Sengl, D., Bratukhin, A., Kobelrausch, M. D., Wilker, S., & Sauter, T. (2024). Online HVAC Optimization under Comfort Constraints via Reinforcement Learning. In IEEE Xplore (Ed.), <i>2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)</i>. IEEE. https://doi.org/10.1109/ICPS59941.2024.10640003</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209607
-
dc.description.abstract
This paper shows the capabilities of Reinforcement Learning to enhance the efficiency of heating, ventilation, and air conditioning systems within office buildings. Our research applies the precise management of temperature and humidity, fundamental control algorithms, and several other factors to reduce the building's power consumption while improving thermal comfort and air quality. We succeed in developing optimal control policies by employing Proximal Policy Optimization and Advantage Actor Critic. The outcomes of our research indicate that our RL framework substantially outperforms existing baselines in maintaining ideal humidity and temperature levels while achieving a notable reduction in energy consumption by 12% over seven years compared to the current static control logic employed in HVAC systems. The contributions of our research include introducing RL agents trained online for effective and economical HVAC control from day one and an underlying shared state embedding space to effectively understand the dynamics between various rooms. We compare our approach against four baseline control logics. Moreover, we show a novel socket communication protocol to seamlessly interact with TRNSYS18, a simulation environment that enables rapid training and evaluation of our agents.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Advantage Actor-Critic
en
dc.subject
Building Automation
en
dc.subject
Climate Change
en
dc.subject
HVAC Systems
en
dc.subject
Online Reinforcement Learning
en
dc.subject
Power Consumption
en
dc.subject
Proximal Policy Optimization
en
dc.title
Online HVAC Optimization under Comfort Constraints via Reinforcement Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-6301-2
-
dc.relation.doi
10.1109/ICPS59941.2024
-
dc.relation.grantno
888448
-
dc.rights.holder
IEEE
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS)
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
USA
-
tuw.project.title
Energieeffizienzoptimierung von HLK-Systemen durch prädiktiver Algorithmen und Modellbildung mittels maschinellem Lernen
-
tuw.researchTopic.id
E1
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Energy Active Buildings, Settlements and Spatial Infrastructures
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
34
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1109/ICPS59941.2024.10640003
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0009-0001-0029-8463
-
tuw.author.orcid
0000-0002-9873-0751
-
tuw.event.name
IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS) 2024
en
tuw.event.startdate
12-05-2024
-
tuw.event.enddate
15-05-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
St. Louis
-
tuw.event.country
US
-
tuw.event.institution
IEEE
-
tuw.event.presenter
Stippel, Christian
-
tuw.event.presenter
Sterzinger, Rafael
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
dc.contributor.editorgroup
IEEE Xplore
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
crisitem.project.grantno
888448
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384-02 - Forschungsbereich Systems on Chip
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.orcid
0009-0001-0029-8463
-
crisitem.author.orcid
0000-0002-9873-0751
-
crisitem.author.orcid
0000-0003-1559-8394
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik