<div class="csl-bib-body">
<div class="csl-entry">Brechelmacher, O., Ničković, D., Nießen, T., Sallinger, S. S., & Weissenbacher, G. (2024). Differential Property Monitoring for Backdoor Detection. In K. Ogata, D. Mery, M. Sun, & S. Liu (Eds.), <i>Formal Methods and Software Engineering</i> (pp. 216–236). Springer. https://doi.org/10.34726/8400</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209712
-
dc.identifier.uri
https://doi.org/10.34726/8400
-
dc.description.abstract
A faithful characterization of backdoors is a prerequisite for an effective automated detection. Unfortunately, as we demonstrate, formalization attempts in terms of temporal safety properties prove far from trivial and may involve several revisions. Moreover, given the complexity of the task at hand, a hapless revision of a property may not only eliminate but also introduce inaccuracies in the specification. We introduce a method called differential property monitoring that addresses this challenge by monitoring discrepancies between two versions of a property, and illustrate that this technique can also be used to analyze observations of untrusted components. We demonstrate the utility of the approach using a range of case studies – including the recently discovered xz backdoor.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Backdoors
en
dc.subject
Security
en
dc.subject
Monitoring
en
dc.title
Differential Property Monitoring for Backdoor Detection
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/8400
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Japan Advanced Institute of Science and Technology, Japan