<div class="csl-bib-body">
<div class="csl-entry">Joshi, R. B., Indri, P., & Mishra, S. (2024). GraphPrivatizer: Improved Structural Differential Privacy for Graph Neural Networks. <i>Transactions on Machine Learning Research</i>.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209729
-
dc.description.abstract
Graph privacy is crucial in systems that present a graph structure where the confidentiality and privacy of participants play a significant role in the integrity of the system itself. For instance, it is necessary to ensure the integrity of banking systems and transaction networks, protecting the privacy of customers' financial information and transaction details. We propose a method called GraphPrivatizer that privatizes the structure of a graph and protects it under Differential Privacy. GraphPrivatizer performs a controlled perturbation of the graph structure by randomly replacing the neighbors of a node with other similar neighbors, according to some similarity metric. With regard to neighbor perturbation, we find that aggregating features to compute similarities and imposing a minimum similarity score between the original and the replaced nodes provides the best privacy-utility trade-off. We use our method to train a Graph Neural Network server-side without disclosing users' private information to the server. We conduct experiments on real-world graph datasets and empirically evaluate the privacy of our models against privacy attacks.
en
dc.language.iso
en
-
dc.publisher
Transactions on Machine Learning Research
-
dc.relation.ispartof
Transactions on Machine Learning Research
-
dc.subject
Graph Neural Netowrk
en
dc.subject
Differential Privacy
en
dc.subject
Machine Learning
en
dc.title
GraphPrivatizer: Improved Structural Differential Privacy for Graph Neural Networks
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Cyprus Institute, Cyprus
-
dc.contributor.affiliation
National Institute of Science Education and Research, India
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://github.com/pindri/gnn-structural-privacy
-
dcterms.isPartOf.title
Transactions on Machine Learning Research
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
dc.date.onlinefirst
2024-10-01
-
dc.identifier.eissn
2835-8856
-
dc.description.numberOfPages
30
-
tuw.author.orcid
0000-0002-9910-7291
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Cyprus Institute
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
National Institute of Science Education and Research
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering