<div class="csl-bib-body">
<div class="csl-entry">Strömel, K. R., Henry, S., Johansson, T., Niess, J., & Woźniak, P. W. (2024). Narrating Fitness: Leveraging Large Language Models for Reflective Fitness Tracker Data Interpretation. In <i>CHI ’24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems</i>. CHI 2024, United States of America (the). https://doi.org/10.1145/3613904.3642032</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209736
-
dc.description.abstract
While fitness trackers generate and present quantitative data, past research suggests that users often conceptualise their wellbeing in qualitative terms. This discrepancy between numeric data and personal wellbeing perception may limit the effectiveness of personal informatics tools in encouraging meaningful engagement with one's wellbeing. In this work, we aim to bridge the gap between raw numeric metrics and users' qualitative perceptions of wellbeing. In an online survey with n = 273 participants, we used step data from fitness trackers and compared three presentation formats: standard charts, qualitative descriptions generated by an LLM (Large Language Model), and a combination of both. Our findings reveal that users experienced more reflection, focused attention and reward when presented with the generated qualitative data compared to the standard charts alone. Our work demonstrates how automatically generated data descriptions can effectively complement numeric fitness data, fostering a richer, more reflective engagement with personal wellbeing information.
en
dc.language.iso
en
-
dc.subject
fitness trackers
en
dc.subject
generative AI
en
dc.subject
personal informatics
en
dc.subject
reflection
en
dc.title
Narrating Fitness: Leveraging Large Language Models for Reflective Fitness Tracker Data Interpretation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-0330-0
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-05 - Forschungsbereich Human Computer Interaction
-
tuw.publisher.doi
10.1145/3613904.3642032
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0009-0009-6126-0571
-
tuw.author.orcid
0009-0001-9629-3148
-
tuw.author.orcid
0009-0008-5567-3460
-
tuw.author.orcid
0000-0003-3529-0653
-
tuw.author.orcid
0000-0003-3670-1813
-
tuw.event.name
CHI 2024
en
tuw.event.startdate
11-05-2024
-
tuw.event.enddate
16-05-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Strömel, Konstantin R.
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E193-05 - Forschungsbereich Human Computer Interaction
-
crisitem.author.orcid
0009-0009-6126-0571
-
crisitem.author.orcid
0009-0001-9629-3148
-
crisitem.author.orcid
0009-0008-5567-3460
-
crisitem.author.orcid
0000-0003-3529-0653
-
crisitem.author.orcid
0000-0003-3670-1813
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology