<div class="csl-bib-body">
<div class="csl-entry">Takhtkeshha, N., Bayrak, O. C., Mandlburger, G., Remondino, F., Kukko, A., & Hyyppä, J. (2024). Automatic Annotation Of 3D Multispectral LiDAR Data For Land Cover Classification. In <i>IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium</i> (pp. 8645–8649). https://doi.org/10.1109/IGARSS53475.2024.10642907</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209753
-
dc.description.abstract
Ongoing advancements in Earth observation technologies have led to an increasing demand for fine-grained 3D maps, particularly in urban areas rich of diverse objects. Unlike traditional monochromatic LiDAR (ML), modern multispectral LiDAR (MSL) systems simultaneously capture high resolution geometric and spectral data, especially beneficial for accurate 3D urban mapping. At the same time, deep learning (DL) models have shown promising results in urban mapping, despite their need for large amount of labeled data. This study presents a new method based on zero-shot and K-means unsupervised learning to automatically label 3D MSL data. The benefits of MSL's spatial-spectral information and autoannotated training data have been explored by using KPConv point-wise DL model. Achieved results indicate that the proposed auto-annotation pipeline, with an overall accuracy (OA) of ca 85% and a mean Intersection over Union (mIoU) of ca 70%, could ease laborious annotation task and facilitate the development of new unsupervised point-based semantic segmentation algorithms for 3D land cover classification.
en
dc.language.iso
en
-
dc.subject
3D urban mapping
en
dc.subject
automatic annotation
en
dc.subject
deep learning
en
dc.subject
land cover
en
dc.subject
Multispectral LiDAR
en
dc.title
Automatic Annotation Of 3D Multispectral LiDAR Data For Land Cover Classification
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-6032-5
-
dc.relation.doi
10.1109/IGARSS53475.2024
-
dc.description.startpage
8645
-
dc.description.endpage
8649
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E120-07 - Forschungsbereich Photogrammetrie
-
tuw.publisher.doi
10.1109/IGARSS53475.2024.10642907
-
dc.description.numberOfPages
5
-
tuw.author.orcid
0000-0003-1659-5419
-
tuw.author.orcid
0000-0002-5147-747X
-
tuw.event.name
2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2024)