<div class="csl-bib-body">
<div class="csl-entry">Parzer, R., Vana Gür, L., & Filzmoser, P. (2024). Sparse data-driven random projection in regression for high-dimensional data. In P. Filzmoser (Ed.), <i>Program and Abstracts: Austrian Statistical Days 2024</i> (pp. 11–11).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209754
-
dc.description.abstract
We examine the linear regression problem in a challenging high-dimensional setting with correlated predictors to explain and predict relevant quantities, with explicitly allowing the regression coefficient to vary from sparse to dense. Most classical high-dimensional regression estimators require some degree of sparsity. We discuss the more recent concept of random projection as computationally fast dimension reduction tool, and propose a new random projection matrix tailored to the linear regression problem with a theoretical bound on the gain in expected prediction error over conventional random projections.
Around this new random projection, we built the Sparse Projected Averaged Regression (SPAR) method combining probabilistic variable screening steps with the random projection steps to obtain an ensemble of small linear models with a thresholding parameter to obtain a higher degree of sparsity. In extensive simulations and a real data application we compare prediction and variable ranking performance to various competitors.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Random Projection
en
dc.title
Sparse data-driven random projection in regression for high-dimensional data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
11
-
dc.description.endpage
11
-
dc.relation.grantno
ZK 35-G
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Program and Abstracts: Austrian Statistical Days 2024
-
tuw.project.title
Hochdimensionales statistisches Lernen: Neue Methoden zur Förderung der Wirtschafts- und Nachhaltigkeitspolitik