<div class="csl-bib-body">
<div class="csl-entry">Da Ros, F., Di Gaspero, L., Lackner, M.-L., & Musliu, N. (2024). Reducing Energy Consumption in Electronic Component Manufacturing through Large Neighborhood Search. In <i>GECCO ’24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion</i> (pp. 1706–1714). https://doi.org/10.1145/3638530.3664132</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209771
-
dc.description.abstract
Amidst the ongoing climate crisis, there is a pressing need to reduce energy consumption - especially in industrial settings, as recognized by the United Nations Sustainability Goals (in particular, 9 and 12). To mitigate energy usage in production, strategically grouping compatible jobs and processing them together in batches, as captured by batch scheduling problems, is often beneficial. The Oven Scheduling Problem (OSP), is an NP-hard real-world parallel batch scheduling problem that arises in the electronic component industry. The goal of the OSP is to schedule jobs on ovens while minimizing total oven operating time, job tardiness, and setup costs. To reduce oven runtime, compatible jobs can be processed simultaneously in batches. The schedule must respect oven eligibility and availability, job release dates, setup times between batches, and oven capacity constraints.We propose and fine-tune a Large Neighborhood Search (LNS) algorithm that uses three different destroy operators and a repair operator based on an exact method (a Constraint Programming model). Our findings demonstrate that LNS significantly enhances the solution quality for many large instances compared to existing exact methods from the literature. Furthermore, we develop a user-friendly dashboard to facilitate decision-makers in the navigation of the optimization tool.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
batch scheduling problem
en
dc.subject
decision support system
en
dc.subject
large neighborhood search
en
dc.subject
oven scheduling problem
en
dc.title
Reducing Energy Consumption in Electronic Component Manufacturing through Large Neighborhood Search
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-0495-6
-
dc.description.startpage
1706
-
dc.description.endpage
1714
-
dc.relation.grantno
keine Angabe
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
-
tuw.peerreviewed
true
-
tuw.project.title
CD Labor für Künstliche Intelligenz und Optimierung in Planung und Scheduling
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3638530.3664132
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-7026-4165
-
tuw.author.orcid
0000-0003-0299-6086
-
tuw.author.orcid
0000-0002-9916-9011
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.event.name
GECCO '24 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion
en
tuw.event.startdate
14-07-2024
-
tuw.event.enddate
18-07-2024
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Da Ros, Francesca
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence