<div class="csl-bib-body">
<div class="csl-entry">Staudinger, M., Kern, B. M. J., Miksa, T., Arnhold, L., Knees, P., Rauber, A., & Hanbury, A. (2024). Mission Reproducibility: An Investigation on Reproducibility Issues in Machine Learning and Information Retrieval Research. In <i>Proceedings 2024 IEEE 20th International Conference on e-Science (e-Science)</i>. IEEE eScience 2024, Osaka, Japan. IEEE. https://doi.org/10.1109/e-Science62913.2024.10678657</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209781
-
dc.description.abstract
This paper analyzes the most common problems limiting reproducibility of Information Retrieval research and provides researchers with insights and guidelines to improve the reproducibility of experiments and to allow the verification of obtained results. We conducted a study on 45 reproduction reports off 17 different papers, which have been published at renowned IR conferences. We analyzed the reports qualitatively and quantitatively and looked into the different insights from different groups. Occurring problems are classified into three problem families and 13 categories and afre then analyzed with respect to their influence on the reproduction process as well as on their frequency of appearance over time and per conference. Of these 17 different papers, 14 papers were reproducible to a certain degree without significant differences to the original results, but in many cases not the whole experiment was reproducible due to missing code, information or data. Also, we look at assumptions that were made when reproducing the different papers, as some experiment workflows were incomplete and information was missing. In addition, we propose recommendations to make machine learning research more reproducible and FAIR.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Reproducibility
en
dc.subject
Information Retrieval
en
dc.subject
Machine Learning
en
dc.subject
FAIR Principles
en
dc.subject
FAIR4ML
en
dc.title
Mission Reproducibility: An Investigation on Reproducibility Issues in Machine Learning and Information Retrieval Research
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings 2024 IEEE 20th International Conference on e-Science (e-Science)
-
dc.relation.isbn
979-8-3503-6561-0
-
dc.relation.doi
10.1109/e-Science62913.2024
-
dc.relation.grantno
FO999904624
-
dc.relation.grantno
P 33526-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2024 IEEE 20th International Conference on e-Science (e-Science)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.project.title
Fostering Austria's Innovative Strength and Research excellence in Artificial Intelligence
-
tuw.project.title
Empfehlungssystem & Nutzer: Hin zu gegenseitigem Verständnis
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E057-09 - Fachbereich VSC Research Center
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
tuw.publisher.doi
10.1109/e-Science62913.2024.10678657
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-5164-2690
-
tuw.author.orcid
0000-0003-1591-7236
-
tuw.author.orcid
0000-0002-4929-7875
-
tuw.author.orcid
0009-0007-3410-5491
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.author.orcid
0000-0002-9272-6225
-
tuw.author.orcid
0000-0002-7149-5843
-
tuw.event.name
IEEE eScience 2024
en
tuw.event.startdate
16-09-2024
-
tuw.event.enddate
20-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Osaka
-
tuw.event.country
JP
-
tuw.event.presenter
Miksa, Tomasz
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-5164-2690
-
crisitem.author.orcid
0000-0003-1591-7236
-
crisitem.author.orcid
0000-0002-4929-7875
-
crisitem.author.orcid
0009-0007-3410-5491
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.orcid
0000-0002-9272-6225
-
crisitem.author.orcid
0000-0002-7149-5843
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E058 - Forschungs-, Technologie- und Innovationssupport
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH