<div class="csl-bib-body">
<div class="csl-entry">Altieri, A. O., Romanelli, M., Pichler, G., Alberge, F., & Piantanida, P. (2024). Beyond the Norms: Detecting Prediction Errors in Regression Models. In <i>Proceedings of the 41st International Conference on Machine Learning</i> (pp. 1186–1221). https://doi.org/10.34726/8406</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209792
-
dc.identifier.uri
https://doi.org/10.34726/8406
-
dc.description.abstract
This paper tackles the challenge of detecting unreliable behavior in regression algorithms, which may arise from intrinsic variability (e.g., aleatoric uncertainty) or modeling errors (e.g., model uncertainty). First, we formally introduce the notion of unreliability in regression, i.e., when the output of the regressor exceeds a specified discrepancy (or error). Then, using powerful tools for probabilistic modeling, we estimate the discrepancy density, and we measure its statistical diversity using our proposed metric for statistical dissimilarity. In turn, this allows us to derive a data-driven score that expresses the uncertainty of the regression outcome. We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches, and contributing to the broader field of uncertainty quantification and safe machine learning systems.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of Machine Learning Research
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
error detection
en
dc.subject
Regression
en
dc.subject
Reliability
en
dc.subject
Safety
en
dc.subject
Trustworthy AI
en
dc.subject
Uncertainty
en
dc.title
Beyond the Norms: Detecting Prediction Errors in Regression Models
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/8406
-
dc.contributor.affiliation
CentraleSupélec, France
-
dc.contributor.affiliation
New York University, United States of America (the)
-
dc.contributor.affiliation
Université Paris-Saclay, France
-
dc.contributor.affiliation
Université Paris-Saclay, France
-
dc.description.startpage
1186
-
dc.description.endpage
1221
-
dc.rights.holder
Copyright 2024 by the author(s).
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 41st International Conference on Machine Learning
-
tuw.container.volume
235
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I7
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Telecommunication
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
tuw.linking
https://zenodo.org/records/11281964
-
tuw.publication.orgunit
E389-03 - Forschungsbereich Signal Processing
-
dc.identifier.libraryid
AC17419632
-
dc.description.numberOfPages
36
-
tuw.author.orcid
0000-0001-9346-6704
-
tuw.author.orcid
0000-0001-5696-4472
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
41st International Conference on Machine Learning (ICML 2024)