<div class="csl-bib-body">
<div class="csl-entry">Mascaro, E. V., Ahn, H., & Lee, D. (2024). A Unified Masked Autoencoder with Patchified Skeletons for Motion Synthesis. In M. Wooldridge (Ed.), <i>Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)</i> (pp. 5261–5269). AAAI Press. https://doi.org/10.1609/aaai.v38i6.28333</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209820
-
dc.description.abstract
The synthesis of human motion has traditionally been addressed through task-dependent models that focus on specific challenges, such as predicting future motions or filling in intermediate poses conditioned on known key-poses. In this paper, we present a novel task-independent model called UNIMASK-M, which can effectively address these challenges using a unified architecture. Our model obtains comparable or better performance than the state-of-the-art in each field. Inspired by Vision Transformers (ViTs), our UNIMASK-M model decomposes a human pose into body parts to leverage the spatio-temporal relationships existing in human motion. Moreover, we reformulate various pose-conditioned motion synthesis tasks as a reconstruction problem with different masking patterns given as input. By explicitly informing our model about the masked joints, our UNIMASK-M becomes more robust to occlusions. Experimental results show that our model successfully forecasts human motion on the Human3.6M dataset while achieving state-of-the-art results in motion inbetweening on the LaFAN1 dataset for long transition periods.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Motion & Tracking
en
dc.subject
Vision for Robotics & Autonomous Driving
en
dc.subject
Understanding People, Theories, Concepts and Methods
en
dc.subject
Deep Generative Models & Autoencoders
en
dc.title
A Unified Masked Autoencoder with Patchified Skeletons for Motion Synthesis
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Ulsan National Institute of Science and Technology, Korea (the Republic of)
-
dc.contributor.editoraffiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-887-9
-
dc.description.startpage
5261
-
dc.description.endpage
5269
-
dc.relation.grantno
H2020-MSCA-ITN-2019
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
-
tuw.container.volume
38
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington, DC, USA
-
tuw.project.title
PErsonalized Robotics as SErvice Oriented applications
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.linking
https://evm7.github.io/UNIMASKM-page/
-
tuw.publication.orgunit
E384-03 - Forschungsbereich Autonomous Systems
-
tuw.publisher.doi
10.1609/aaai.v38i6.28333
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-1897-7664
-
tuw.editor.orcid
0000-0002-9329-8410
-
tuw.event.name
AAAI 2024 conference
en
tuw.event.startdate
20-02-2024
-
tuw.event.enddate
27-02-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Mascaro, Esteve Valls
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
H2020-MSCA-ITN-2019
-
crisitem.author.dept
E384-03 - Forschungsbereich Autonomous Systems
-
crisitem.author.dept
Ulsan National Institute of Science and Technology, Korea (the Republic of)