<div class="csl-bib-body">
<div class="csl-entry">Mascaro, E. V., & Lee, D. (2024). Know your limits! Optimize the robot’s behavior through self-awareness. In E. Yoshida (Ed.), <i>2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)</i> (pp. 258–265). https://doi.org/10.1109/Humanoids58906.2024.10769929</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209826
-
dc.description.abstract
As humanoid robots transition from labs to realworld environments, it is essential to democratize robot control for non-expert users. Recent human-robot imitation algorithms focus on following a reference human motion with high precision, but they are susceptible to the quality of the reference motion and require the human operator to simplify its movements to match the robot’s capabilities. Instead, we consider that the robot should understand and adapt the reference motion to its own abilities, facilitating the operator’s task. For that, we introduce a deep-learning model that anticipates the robot’s performance when imitating a given reference. Then, our system can generate multiple references given a highlevel task command, assign a score to each of them, and select the best reference to achieve the desired robot behavior. Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness. We integrate advanced motion generation, robot control, and SAW in one unique system, ensuring optimal robot behavior for any task command. For instance, SAW can anticipate falls with 99.29% accuracy.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Robot motion
en
dc.subject
Adaptation models
en
dc.subject
Accuracy
en
dc.subject
Natural languages
en
dc.subject
Humanoid robots
en
dc.subject
Kinematics
en
dc.subject
Trajectory
en
dc.subject
Robots
en
dc.subject
Self-aware
en
dc.subject
Physics
en
dc.title
Know your limits! Optimize the robot’s behavior through self-awareness
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Tokyo University of Science
-
dc.relation.isbn
979-8-3503-7357-8
-
dc.relation.doi
10.1109/Humanoids58906.2024
-
dc.description.startpage
258
-
dc.description.endpage
265
-
dc.relation.grantno
H2020-MSCA-ITN-2019
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)
-
tuw.project.title
PErsonalized Robotics as SErvice Oriented applications
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E384-03 - Forschungsbereich Autonomous Systems
-
tuw.publisher.doi
10.1109/Humanoids58906.2024.10769929
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-1897-7664
-
tuw.editor.orcid
0000-0002-3077-6964
-
tuw.event.name
23rd International Conference on Humanoid Robots (Humanoids)