<div class="csl-bib-body">
<div class="csl-entry">Key, F., & Freinberger, L. (2024). Developing a formulation of structural design optimization problems for quantum annealing. In <i>16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics</i> (pp. 1073–1073). http://hdl.handle.net/20.500.12708/209870</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209870
-
dc.description.abstract
We develop a formulation of structural design optimization problems, which aims to be solved by quantum annealing (QA) on currently available devices. In structural design optimization, the goal is to improve the performance and efficiency of structures by finding the best design, e.g., a choice of component dimensions, that meets specific criteria, such as maximizing strength. This process typically involves computational optimization methods to explore various design possibilities. Here, a recently evolving strategy based on quantum mechanical effects is QA. In this context, a suitable problem needs to be provided in a specific formulation, e.g., as a quadratic unconstrained binary optimization (QUBO) model. Therefore, we present a corresponding formulation for structural design optimization problems. In such a problem, an analysis model is required to evaluate the structure's performance. For this purpose, we use energy minimization principles to determine how a structure behaves under applied loads. This allows us to merge the analysis problem with the optimization problem as one overall minimization problem. Finally, mapping this problem to a QUBO problem enables us to solve it with QA.
We apply this approach to a one-dimensional sizing problem of a compound bar under self-weight loading. In this course, we study how specific aspects of the formulation influence the number of required qubits. The accuracy of the obtained results is evaluated by means of analytic solutions. In conclusion, we show that the presented formulation can be used to solve structural design optimization problems by QA on existing hardware.
en
dc.language.iso
en
-
dc.subject
Structural Design Optimization
en
dc.subject
Quantum Annealing
en
dc.title
Developing a formulation of structural design optimization problems for quantum annealing
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
1073
-
dc.description.endpage
1073
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0001-6622-4806
-
tuw.event.name
16th World Congress on Computational Mechanics and 4th Pan American Congress on Computational Mechanics
en
tuw.event.startdate
21-07-2024
-
tuw.event.enddate
26-07-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Key, Fabian
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
60
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden