<div class="csl-bib-body">
<div class="csl-entry">Spring, J., Rossell, M., Vogel, A., Federova, N., Herrero-Martin, J., Iñiguez-González, J., & Gibert, M. (2024). Engineering unequal antipolar displacement in ferromagnetic layered oxide heterostructures. In <i>iWoe-30: Darmstadt 2024: Digital Abstract Book</i> (pp. 29–29). http://hdl.handle.net/20.500.12708/209880</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209880
-
dc.description.abstract
Multiferroic materials that simultaneously display ferroelectricity and magnetic ordering are highly sought after for next-generation electronics applications. The combination of these properties is very rare in single-phase materials, thus heterostructure engineering represents a promising alternative pathway. In this context, heterostructures comprising the insulating and ferromagnetic double perovskites La2NiMnO6 and RE2NiMnO6 (RE=rare earthLa) represent an intriguing system. These superlattices are predicted to exhibit unequal antipolar displacement of the La and RE ions [1], which, when combined with odd periodicity superlattice layering, could potentially lead to hybrid improper ferroelectricity. La2NiMnO6/Sm2NiMnO6 superlattices are grown with atomic precision using a sputtering system equipped with high-energy electron diffraction (RHEED). The heterostructures display robust ferromagnetism [2], as confirmed by in-house magnetometry and synchrotron measurements. Scanning transmission electron microscopy (STEM) in conjunction with first-principles calculations has validated the predicted unequal antipolar displacement in our superlattices. This represents a significant advance towards the establishment of hybrid improper ferroelectricity in artificially layered heterostructures.
en
dc.language.iso
en
-
dc.subject
oxide superlattices
en
dc.subject
antipolar distortions
en
dc.subject
ferromagnetism
en
dc.title
Engineering unequal antipolar displacement in ferromagnetic layered oxide heterostructures
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Zurich, Switzerland
-
dc.contributor.affiliation
Electron Microscopy Center, Switzerland
-
dc.contributor.affiliation
University of Basel, Switzerland
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.contributor.affiliation
ALBA Synchrotron (Spain), Spain
-
dc.contributor.affiliation
Luxembourg Institute of Science and Technology, Luxembourg
-
dc.description.startpage
29
-
dc.description.endpage
29
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
iWoe-30: Darmstadt 2024: Digital Abstract Book
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Structure-Property Relationsship
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E138-06 - Forschungsbereich Komplexe Oxidsysteme
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0001-8856-6831
-
tuw.event.name
International Workshop on Oxide Electronics (iWOE-30)