<div class="csl-bib-body">
<div class="csl-entry">Arzt, V., Azarbeik, M. M., Lasy, I., Kerl, T., & Recski, G. (2024). TU Wien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection. In A. K. Ojha, A. S. Dogruöz, H. Tayyar Madabushi, G. Da San Martino, S. Rosenthal, & A. Rosá (Eds.), <i>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</i> (pp. 1183–1196). Association for Computational Linguistics. https://doi.org/10.18653/v1/2024.semeval-1.173</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209896
-
dc.description.abstract
This paper discusses challenges in Natural Language Generation (NLG), specifically addressing neural networks producing output that is fluent but incorrect, leading to “hallucinations”. The SHROOM shared task involves Large Language Models in various tasks, and our methodology employs both model-agnostic and model-aware approaches for hallucination detection. The limited availability of labeled training data is addressed through automatic label generation strategies. Model-agnostic methods include word alignment and fine-tuning a BERT-based pretrained model, while model-aware methods leverage separate classifiers trained on LLMs’ internal data (layer activations and attention values). Ensemble methods combine outputs through various techniques such as regression metamodels, voting, and probability fusion. Our best performing systems achieved an accuracy of 80.6% on the model-aware track and 81.7% on the model-agnostic track, ranking 3rd and 8th among all systems, respectively.
en
dc.language.iso
en
-
dc.subject
Hallucination Detection
en
dc.subject
model-aware approaches
en
dc.subject
model-agnostic approaches
en
dc.subject
Transparency
en
dc.subject
Large Language Models
en
dc.title
TU Wien at SemEval-2024 Task 6: Unifying Model-Agnostic and Model-Aware Techniques for Hallucination Detection
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.editoraffiliation
Ollscoil na Gaillimhe – University of Galway, Ireland
-
dc.contributor.editoraffiliation
Ghent University, Belgium
-
dc.contributor.editoraffiliation
University of Bath, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
University of Padua, Italy
-
dc.contributor.editoraffiliation
Universidad de la República, Uruguay
-
dc.relation.isbn
979-8-89176-107-0
-
dc.description.startpage
1183
-
dc.description.endpage
1196
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computational Linguistics
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.18653/v1/2024.semeval-1.173
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0003-0077-9408
-
tuw.author.orcid
0000-0001-5551-3100
-
tuw.editor.orcid
0000-0002-9800-9833
-
tuw.editor.orcid
0000-0001-5260-3653
-
tuw.editor.orcid
0000-0002-2609-483X
-
tuw.editor.orcid
0000-0002-9908-2717
-
tuw.event.name
SemEval-2024 : 18th International Workshop on Semantic Evaluation
en
tuw.event.startdate
20-06-2024
-
tuw.event.enddate
21-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Mexico City
-
tuw.event.country
MX
-
tuw.event.presenter
Arzt, Varvara
-
wb.sciencebranch
Sprach- und Literaturwissenschaften
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
6020
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
90
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0001-5551-3100
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering