<div class="csl-bib-body">
<div class="csl-entry">Gjergji, I., & Musliu, N. (2024). Large Neighborhood Search for the Capacitated P-Median Problem. In <i>Metaheuristics : 15th International Conference, MIC 2024, Lorient, France, June 4–7, 2024, Proceedings, Part II</i> (pp. 158–173). Springer. https://doi.org/10.1007/978-3-031-62922-8_11</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209919
-
dc.description.abstract
As a location-allocation problem, the goal of the p-median problem is to find the optimal selection of p medians that results in the minimum total distance from these medians to their assigned objects. The capacitated p-median problem (CPMP) is a version of the p-median problem that sets maximum values for the capacities of the medians in order to fulfill the demand arising from these objects. Considering the numerous application cases of the CPMP, in this paper we present a large neighborhood search (LNS) algorithm for solving it. We propose and analyze various destruction operators within the framework of LNS to efficiently explore diverse neighborhoods. A MIP solver is used in the repair phase. We evaluated LNS across different data sets available in the literature and show that this method provides a lower average GAP value for instances up to 5000 facilities. Additionally, our LNS algorithm found new best solutions for seven evaluated instances.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
large neighborhood search (LNS)
en
dc.subject
capacitated p-median problem (CPMP)
en
dc.subject
algorithm
en
dc.title
Large Neighborhood Search for the Capacitated P-Median Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Metaheuristics : 15th International Conference, MIC 2024, Lorient, France, June 4–7, 2024, Proceedings, Part II
-
dc.relation.isbn
978-3-031-62921-1
-
dc.relation.doi
10.1007/978-3-031-62922-8
-
dc.relation.issn
0302-9743
-
dc.description.startpage
158
-
dc.description.endpage
173
-
dc.relation.grantno
I5443-N
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Metaheuristics : 15th International Conference, MIC 2024, Lorient, France, June 4–7, 2024, Proceedings, Part II
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.project.title
Reverse supply chain of residual wood biomass
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1007/978-3-031-62922-8_11
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.event.name
MIC 2024
en
tuw.event.startdate
04-06-2024
-
tuw.event.enddate
07-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lorient
-
tuw.event.country
FR
-
tuw.event.presenter
Gjergji, Ida
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence