<div class="csl-bib-body">
<div class="csl-entry">Hitarth, S., Kenison, G. J., Kovacs, L., & Varonka, A. (2024). Linear Loop Synthesis for Quadratic Invariants. In O. Beyersdorff, M. M. Kanté, O. Kupferman, & D. Lokshtanov (Eds.), <i>41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)</i>. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2024.41</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209924
-
dc.description.abstract
Invariants are key to formal loop verification as they capture loop properties that are valid before and after each loop iteration. Yet, generating invariants is a notorious task already for syntactically restricted classes of loops. Rather than generating invariants for given loops, in this paper we synthesise loops that exhibit a predefined behaviour given by an invariant. From the perspective of formal loop verification, the synthesised loops are thus correct by design and no longer need to be verified. To overcome the hardness of reasoning with arbitrarily strong invariants, in this paper we construct simple (non-nested) while loops with linear updates that exhibit polynomial equality invariants. Rather than solving arbitrary polynomial equations, we consider loop properties defined by a single quadratic invariant in any number of variables. We present a procedure that, given a quadratic equation, decides whether a loop with affine updates satisfying this equation exists. Furthermore, if the answer is positive, the procedure synthesises a loop and ensures its variables achieve infinitely many different values.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Diophantine equations
en
dc.subject
loop invariants
en
dc.subject
program synthesis
en
dc.subject
verification
en
dc.title
Linear Loop Synthesis for Quadratic Invariants
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Hong Kong University of Science and Technology, Hong Kong
-
dc.contributor.affiliation
Liverpool John Moores University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
Friedrich Schiller University Jena, Germany
-
dc.contributor.editoraffiliation
Hebrew University of Jerusalem, Israel
-
dc.contributor.editoraffiliation
University of California, Santa Barbara, United States of America (the)