<div class="csl-bib-body">
<div class="csl-entry">Lorang, P., Horvath, H., Kietreiber, T., Zips, P., Heitzinger, C., & Scheutz, M. (2024). Adapting to the “Open World”: The Utility of Hybrid Hierarchical Reinforcement Learning and Symbolic Planning. In <i>2024 IEEE International Conference on Robotics and Automation (ICRA)</i> (pp. 508–514). https://doi.org/10.1109/ICRA57147.2024.10611594</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209930
-
dc.description.abstract
Open-world robotic tasks such as autonomous driving pose significant challenges to robot control due to unknown and unpredictable events that disrupt task performance. Neural network-based reinforcement learning (RL) techniques (like DQN, PPO, SAC, etc.) struggle to adapt in large domains and suffer from catastrophic forgetting. Hybrid planning and RL approaches have shown some promise in handling environmental changes but lack efficiency in accommodation speed. To address this limitation, we propose an enhanced hybrid system with a nested hierarchical action abstraction that can utilize previously acquired skills to effectively tackle unexpected novelties. We show that it can adapt faster and generalize better compared to state-of-the-art RL and hybrid approaches, significantly improving robustness when multiple environmental changes occur at the same time.
en
dc.language.iso
en
-
dc.subject
Training
en
dc.subject
Autonomous vehicles
en
dc.subject
Task analysis
en
dc.subject
Planning
en
dc.subject
Robustness
en
dc.subject
Reinforcement learning
en
dc.subject
Robot control
en
dc.title
Adapting to the "Open World": The Utility of Hybrid Hierarchical Reinforcement Learning and Symbolic Planning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-8457-4
-
dc.relation.doi
10.1109/ICRA57147.2024
-
dc.description.startpage
508
-
dc.description.endpage
514
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2024 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1109/ICRA57147.2024.10611594
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-9030-2349
-
tuw.event.name
IEEE International Conference on Robotics and Automation (ICRA) 2024
en
tuw.event.startdate
13-05-2024
-
tuw.event.enddate
17-05-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Yokohama
-
tuw.event.country
JP
-
tuw.event.presenter
Lorang, Pierrick
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
E376 - Institut für Automatisierungs- und Regelungstechnik
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E376 - Institut für Automatisierungs- und Regelungstechnik
-
crisitem.author.orcid
0000-0002-9030-2349
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik