<div class="csl-bib-body">
<div class="csl-entry">Maliakel, P. J., Ilager, S., & Brandic, I. (2024). FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN. In <i>EdgeSys ’24: Proceedings of the 7th International Workshop on Edge Systems, Analytics and Networking</i> (pp. 1–6). Association for Computing Machinery. https://doi.org/10.1145/3642968.3654813</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209931
-
dc.description.abstract
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices (e.g., mobile devices, IoT edge nodes). It enables Artificial Intelligence (AI) at the edge by creating models without sharing actual data across the network. Existing research typically focuses on generic aspects of non-IID data and heterogeneity in client's system characteristics, but they often neglect the issue of insufficient data for model development, which can arise from uneven class label distribution and highly variable data volumes across edge nodes. In this work, we propose FLIGAN, a novel approach to address the issue of data incompleteness in FL. First, we leverage Generative Adversarial Networks (GANs) to adeptly capture complex data distributions and generate synthetic data that closely resemble real-world data. Then, we use synthetic data to enhance the robustness and completeness of datasets across nodes. Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process. We incorporate techniques such as classwise sampling and node grouping, designed to improve the federated GAN's performance, enabling the creation of high-quality synthetic datasets and facilitating efficient FL training. Empirical results from our experiments demonstrate that FLIGAN significantly improves model accuracy, especially in scenarios with high class imbalances, achieving up to a 20% increase in model accuracy over traditional FL baselines.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Edge Computing
en
dc.subject
Federated Learning
en
dc.subject
GANs
en
dc.subject
Incomplete Data
en
dc.title
FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-4007-0539-7
-
dc.relation.doi
10.1145/3642968
-
dc.description.startpage
1
-
dc.description.endpage
6
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
PAT1668223
-
dc.relation.grantno
FO999910946
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
EdgeSys '24: Proceedings of the 7th International Workshop on Edge Systems, Analytics and Networking
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Themis - Vertrauenswürdiges und nachhaltiges Code-Offloading
-
tuw.project.title
Virtual Shepherd
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1145/3642968.3654813
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0009-0007-0661-5937
-
tuw.event.name
7th International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2024)
en
tuw.event.startdate
22-04-2024
-
tuw.event.enddate
22-04-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athen
-
tuw.event.country
GR
-
tuw.event.presenter
Maliakel, Paul Joe
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH