<div class="csl-bib-body">
<div class="csl-entry">Mischek, F., & Musliu, N. (2024). Preference Explanation and Decision Support for Multi-Objective Real-World Test Laboratory Scheduling. In <i>Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling</i> (pp. 378–386). AAAI Press. https://doi.org/10.1609/icaps.v34i1.31497</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209932
-
dc.description.abstract
Complex real-world scheduling problems often include multiple conflicting objectives. Decision makers (DMs) can express their preferences over those objectives in different ways, including as sets of weights which are used in a linear combination of objective values. However, finding good sets of weights that result in solutions with desirable qualities is challenging and currently involves a lot of trial and error. We propose a general method to explain objectives' values under a given set of weights using Shapley regression values. We demonstrate this approach on the Test Laboratory Scheduling Problem (TLSP), for which we propose a multi-objective solution algorithm and show that suggestions for weight adjustments based on the introduced explanations are successful in guiding decision makers towards solutions that match their expectations. This method is included in the TLSP MO-Explorer, a new decision support system that enables the exploration and analysis of high-dimensional Pareto fronts.
en
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.language.iso
en
-
dc.subject
Decision makers (DMs)
en
dc.subject
Test Laboratory Schedul-ing Problem (TLSP)
en
dc.subject
multi-objective solution
en
dc.subject
Algorithms
en
dc.title
Preference Explanation and Decision Support for Multi-Objective Real-World Test Laboratory Scheduling
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling
-
dc.relation.isbn
10 1-57735-889-9
-
dc.relation.issn
2334-0835
-
dc.description.startpage
378
-
dc.description.endpage
386
-
dc.relation.grantno
keine Angabe
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2334-0843
-
tuw.booktitle
Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington, DC, USA
-
tuw.project.title
CD Labor für Künstliche Intelligenz und Optimierung in Planung und Scheduling
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1609/icaps.v34i1.31497
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0003-1166-3881
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.event.name
34th International Conference on Automated Planning and Scheduling (ICAPS 2024)
en
tuw.event.startdate
01-06-2024
-
tuw.event.enddate
06-06-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Banaff, Alberta
-
tuw.event.country
CA
-
tuw.event.presenter
Mischek, Florian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence