<div class="csl-bib-body">
<div class="csl-entry">Ordyniak, S., Paesani, G., Rychlicki, M., & Szeider, S. (2024). Explaining Decisions in ML Models: A Parameterized Complexity Analysis. In <i>Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning</i> (pp. 563–573). IJCAI Organization. https://doi.org/10.24963/kr.2024/53</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209937
-
dc.description.abstract
This paper presents a comprehensive theoretical investigation into the parameterized complexity of explanation problems in various machine learning (ML) models. Contrary to the prevalent black-box perception, our study focuses on models with transparent internal mechanisms. We address two principal types of explanation problems: abductive and contrastive, both in their local and global variants. Our analysis encompasses diverse ML models, including Decision Trees, Decision Sets, Decision Lists, Ordered Binary Decision Diagrams, Random Forests, and Boolean Circuits, and ensembles thereof, each offering unique explanatory challenges. This research fills a significant gap in explainable AI (XAI) by providing a foundational understanding of the complexities of generating explanations for these models. This work provides insights vital for further research in the domain of XAI, contributing to the broader discourse on the necessity of transparency and accountability in AI systems.
en
dc.language.iso
en
-
dc.subject
Explanation
en
dc.subject
Knowledge representation languages-General
en
dc.subject
abduction and diagnosis-General
en
dc.subject
Computational aspects of knowledge representation-General Logic programming
en
dc.title
Explaining Decisions in ML Models: A Parameterized Complexity Analysis
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
-
dc.relation.isbn
978-1-956792-05-8
-
dc.relation.issn
2334-1033
-
dc.description.startpage
563
-
dc.description.endpage
573
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IJCAI Organization
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.24963/kr.2024/53
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-2383-1339
-
tuw.author.orcid
0000-0002-8318-2588
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
en
tuw.event.startdate
02-11-2024
-
tuw.event.enddate
08-11-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Hanoi
-
tuw.event.country
VN
-
tuw.event.presenter
Ordyniak, Sebastian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity