<div class="csl-bib-body">
<div class="csl-entry">Salimibeni, M., Cosenza, B., & Hunold, S. (2024). MPI Collective Algorithm Selection in the Presence of Process Arrival Patterns. In <i>Proceedings : 2024 IEEE International Conference on Cluster Computing : 24 – 27 September 2024 Kobe, Japan</i> (pp. 108–119). https://doi.org/10.1109/CLUSTER59578.2024.00017</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/209941
-
dc.description.abstract
The Message Passing Interface (MPI) is a programming model for developing high-performance applications on large-scale machines. A key component of MPI is its collective communication operations. While the MPI standard defines the semantics of these operations, it leaves the algorithmic implementation to the MPI libraries. Each MPI library contains various algorithms for each collective, and selecting the best algorithm typically relies on performance metrics obtained from micro-benchmarks. In such micro-benchmarks, processes are typically synchronized using an MPI_Barrier before invoking a collective operation. However, in real-world scenarios, processes often arrive at a collective in diverse patterns, often due to resource contention. The performance of collective algorithms can vary significantly depending on the arrival pattern type. In this work, we address the challenge of selecting the most efficient algorithm for a given collective, taking into account process arrival patterns. First, we demonstrate through a simulation study that arrival patterns significantly influence the choice of the optimal collective algorithm for specific communication instances. Second, we conduct a comprehensive micro-benchmark analysis to illustrate the sensitivity of MPI collectives to these arrival patterns. Third, we show that our innovative micro-benchmarking methodology is effective in selecting the best-performing collective algorithm for real-world applications.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Algorithm Selection
en
dc.subject
Collective Communication Operations
en
dc.subject
Library Tuning
en
dc.subject
Message Passing Interface (MPI)
en
dc.subject
Process Arrival Patterns
en
dc.title
MPI Collective Algorithm Selection in the Presence of Process Arrival Patterns
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-5871-1
-
dc.relation.doi
10.1109/CLUSTER59578.2024
-
dc.description.startpage
108
-
dc.description.endpage
119
-
dc.relation.grantno
P 33884-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings : 2024 IEEE International Conference on Cluster Computing : 24 – 27 September 2024 Kobe, Japan
-
tuw.peerreviewed
true
-
tuw.project.title
Offline- und Online-Autotuning von Parallelen Programmen
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-04 - Forschungsbereich Parallel Computing
-
tuw.publisher.doi
10.1109/CLUSTER59578.2024.00017
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-8634-7712
-
tuw.author.orcid
0000-0002-8869-6705
-
tuw.author.orcid
0000-0002-5280-3855
-
tuw.event.name
IEEE International Conference on Cluster Computing, CLUSTER 2024