<div class="csl-bib-body">
<div class="csl-entry">Ramer, G., Yilmaz, U., Hondl, N., & Lendl, B. (2024). Labelfree chemical analysis at nanoscale spatial resolution. In <i>4th INTERNATIONAL PLANT SPECTROSCOPY CONFERENCE IPSC 2024 Program & Book of Abstracts</i> (pp. 17–17).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210026
-
dc.description.abstract
Vibrational spectroscopy (mid-infrared and Raman spectroscopy) is without a question a
powerful tool for molecular analysis and has therefore found wide acceptance for label free
chemical imaging of organic materials and plant and animal tissues. However, as with any
optical imaging technique, the spatial resolution of infrared and Raman spectroscopy are
limited by diffraction to roughly around the employed wavelength.
We can circumvent the diffraction limit by building a nearfield imaging system, i.e. by
moving the detector and/or the light source as close to our specimen as possible. One
approach to move the “detector” closer that has found wide acceptance for mid-IR
spectroscopy is to use photothermal expansion induced by a tuneable pulsed laser for
detection of local absorption. This AFM-IR (atomic force microscopy induced resonance)
technique reads the local thermal expansion using an AFM tip to enable nanometre scale
spatial resolution chemical imaging. AFM-IR can be used to collect mid-IR absorption
spectra from nanoscale samples that resemble conventional bulk spectra [1].
An exciting aspect of AFM-IR is that it can be used to apply multivariate chemical imaging
techniques that are well established for IR microscopy at the nanoscale. These enable to
combine information from multiple spectra or multiple single wavelength images into actual
maps of chemical composition, which can reveal inclusion bodies in cells. We can also
leverage full spectra to create images showing us – secondary structure specific - intracellular
protein distribution at the nanoscale [2].
References
[1] A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM–IR: Combining Atomic
Force Microscopy and Infrared Spectroscopy for Nanoscale Chemical Characterization,” Appl.
Spectrosc., vol. 66, no. 12, pp. 1366–1384, 2012, doi: 10.1366/12-06804.
[2] A. C. V. D. dos Santos et al., “Nanoscale Infrared Spectroscopy and Chemometrics Enable Detection of
Intracellular Protein Distribution,” Anal. Chem., Dec. 2020, doi: 10.1021/acs.analchem.0c02228.
en
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
Christian Doppler Forschungsgesells
-
dc.description.sponsorship
European Commission
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
AFM-IR
en
dc.subject
infrared spectroscopy
en
dc.subject
imaging spectroscopy
en
dc.title
Labelfree chemical analysis at nanoscale spatial resolution
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
17
-
dc.description.endpage
17
-
dc.relation.grantno
953234
-
dc.relation.grantno
Fortgeschrittene MIR Laserspektroskopie
-
dc.relation.grantno
8619858
-
dc.relation.grantno
P 32644-N
-
dc.rights.holder
BOKU
-
dc.type.category
Keynote Contribution
-
tuw.booktitle
4th INTERNATIONAL PLANT SPECTROSCOPY CONFERENCE IPSC 2024 Program & Book of Abstracts
-
tuw.relation.publisherplace
Wien
-
tuw.publication.invited
invited
-
tuw.project.title
Tumor und Lymphknoten auf einer Chip Plattform für Krebsstudien
-
tuw.project.title
Christian Doppler Labor für Fortgeschrittene MIR Laserspektroskopie in der (Bio-)prozessanalytik
-
tuw.project.title
High-Performance Large Area Organic Perovskite devices for lighting, energy and Pervasive Communications
-
tuw.project.title
Advancing QCL-IR spectroscopy of proteins for DSP monitoring
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.id
M1
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.name
Surfaces and Interfaces
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
33
-
tuw.researchTopic.value
34
-
tuw.publication.orgunit
E164-02-1 - Forschungsgruppe Prozessanalytik
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0001-8307-5435
-
tuw.author.orcid
0009-0009-3572-5267
-
tuw.author.orcid
0009-0001-9282-4474
-
tuw.author.orcid
0000-0003-3838-5842
-
tuw.event.name
4th INTERNATIONAL PLANT SPECTROSCOPY CONFERENCE
en
tuw.event.startdate
24-09-2024
-
tuw.event.enddate
27-09-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
BOKU
-
tuw.event.presenter
Ramer, Georg
-
tuw.event.track
Single Track
-
wb.sciencebranch
Chemie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.orcid
0000-0001-8307-5435
-
crisitem.author.orcid
0009-0009-3572-5267
-
crisitem.author.orcid
0009-0001-9282-4474
-
crisitem.author.orcid
0000-0003-3838-5842
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164 - Institut für Chemische Technologien und Analytik