<div class="csl-bib-body">
<div class="csl-entry">Reixach, J., Blum, C., Djukanović, M., & Raidl, G. R. (2024). A Neural Network Based Guidance for a BRKGA: An Application to the Longest Common Square Subsequence Problem. In <i>Evolutionary Computation in Combinatorial Optimization : 24th European Conference, EvoCOP 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3–5, 2024, Proceedings</i> (pp. 1–15). https://doi.org/10.1007/978-3-031-57712-3_1</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210047
-
dc.description.abstract
In this work we apply machine learning to better guide a biased random key genetic algorithm (Brkga) for the longest common square subsequence (LCSqS) problem. The problem is a variant of the well-known longest common subsequence (LCS) problem in which valid solutions are square strings. A string is square if it can be expressed as the concatenation of a string with itself. The original Brkga is based on a reduction of the LCSqS problem to the LCS problem by cutting each input string into two parts. Our work consists in enhancing the search process of Brkga for good cut points by using a machine learning approach, which is trained to produce promising cut points for the input strings of a problem instance. In this study, we show the benefits of this approach by comparing the enhanced Brkga with the original Brkga, using two benchmark sets from the literature. We show that the results of the enhanced Brkga significantly improve over the original results, especially when tackling instances with non-uniformly generated input strings.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Beam search
en
dc.subject
Genetic algorithms
en
dc.subject
Longest Common Subsequences
en
dc.subject
Neural networks
en
dc.title
A Neural Network Based Guidance for a BRKGA: An Application to the Longest Common Square Subsequence Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-57712-3
-
dc.relation.doi
10.1007/978-3-031-57712-3
-
dc.relation.issn
0302-9743
-
dc.description.startpage
1
-
dc.description.endpage
15
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Evolutionary Computation in Combinatorial Optimization : 24th European Conference, EvoCOP 2024, Held as Part of EvoStar 2024, Aberystwyth, UK, April 3–5, 2024, Proceedings
-
tuw.container.volume
14632
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-57712-3_1
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0009-0002-0305-9270
-
tuw.author.orcid
0000-0002-1736-3559
-
tuw.author.orcid
0000-0003-1358-3789
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.event.name
EvoCop 2024
en
tuw.event.startdate
03-04-2024
-
tuw.event.enddate
05-04-2024
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Aberystwyth
-
tuw.event.country
GB
-
tuw.event.presenter
Reixach, Jaume
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity