<div class="csl-bib-body">
<div class="csl-entry">Cho, J., Hara, M., Polly, D. F., & Tada, T. (2023). <i>Lie minimal Weingarten surfaces</i>. arXiv. http://hdl.handle.net/20.500.12708/210149</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210149
-
dc.description.abstract
We consider Lie minimal surfaces, the critical points of the simplest Lie sphere invariant energy, in Riemannian space forms. These surfaces can be characterized via their Euler-Lagrange equations, which take the form of differential equations of the principal curvatures. Surfaces with constant mean curvature that satisfy these equations turn out to be rotational in their space form. We generalize in flat ambient space: here surfaces where the principal curvatures satisfy an affine relationship as well as elliptic linear Weingarten surfaces are rotational as well.
en
dc.language.iso
en
-
dc.subject
Weingarten Surfaces
en
dc.title
Lie minimal Weingarten surfaces
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2310.15695
-
dc.contributor.affiliation
Kobe University, Japan
-
dc.contributor.affiliation
Kobe University, Japan
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research focus
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-5634-9901
-
tuw.author.orcid
0000-0002-7312-3875
-
tuw.author.orcid
0000-0002-6396-9121
-
tuw.author.orcid
0000-0001-7221-8314
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
Kobe University
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Kobe University
-
crisitem.author.orcid
0000-0002-5634-9901
-
crisitem.author.orcid
0000-0002-7312-3875
-
crisitem.author.orcid
0000-0002-6396-9121
-
crisitem.author.orcid
0000-0001-7221-8314
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie