<div class="csl-bib-body">
<div class="csl-entry">Besic, H., Deutschmann-Olek, A., Mešić, K., Kanellopulos, K., & Schmid, S. (2024). Nanomechanical Thermal Response Modeling for Optimal Signal Estimation via Kalman filtering. In S. Schmid (Ed.), <i>Proceedings of the 19th International Workshop on Nanomechanical Sensing</i> (pp. 111–111).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/210192
-
dc.description.abstract
We propose a thermal circuit model for nanomechanical infrared spectroscopy (NEMS-IR), suitable
for model-based filtering techniques such as Kalman filtering. This model accounts for the
resonator’s dual time constant response and its noise profiles, enabling optimal estimation of the
absorbed input power by the nanomechanical resonator. System identification utilizes a step response
(Figure 1a) and the power spectral density of the noise (Figure 1b). An adaptive Kalman filter, which
increases in bandwidth upon resonator illumination, is employed for precise input estimation (Figure
1c and 1d). Reproducibility and linearity are evaluated by conducting five measurements across three
power levels for both laser "on" and "off" transients (Figure 1e). Additionally, a staircase function is
applied to demonstrate the resonator's immunity to the slower second time constant when the
illuminating laser power is increased stepwise.
en
dc.language.iso
en
-
dc.subject
Nanomechanical thermal response modeling
en
dc.subject
Optimal signal estimation
en
dc.subject
Kalman filter
en
dc.title
Nanomechanical Thermal Response Modeling for Optimal Signal Estimation via Kalman filtering
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
111
-
dc.description.endpage
111
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Proceedings of the 19th International Workshop on Nanomechanical Sensing